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Abstract

Dictionary methods for system identification typically rely on one set of measurements to learn governing dynamics of
a system. In this paper, we investigate how fusion of output measurements with state measurements affects the dictionary
selection process in Koopman operator learning problems. While prior methods use dynamical conjugacy to show a direct link
between Koopman eigenfunctions in two distinct data spaces (measurement channels), we explore the specific case where output
measurements are nonlinear, non-invertible functions of the system state. This setup reflects the measurement constraints of
many classes of physical systems, e.g., biological measurement data, where one type of measurement does not directly transform
to another. We propose output constrained Koopman operators (OC-KOs) as a new framework to fuse two measurement sets.
We show that OC-KOs are effective for sensor fusion by proving that when learning a Koopman operator, output measurement
functions serve to constrain the space of potential Koopman observables and their eigenfunctions. Further, low-dimensional
output measurements can be embedded to inform selection of Koopman dictionary functions for high-dimensional models. We
propose two algorithms to identify OC-KO representations directly from data: a direct optimization method that uses state
and output data simultaneously and a sequential optimization method. We prove a theorem to show that the solution spaces
of the two optimization problems are equivalent. We illustrate these findings with a theoretical example and two numerical
simulations.
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1 Introduction

The rapid evolution in sensor technology enables us to
acquire a wealth of information about the governing dy-
namics of nonlinear systems. Novel sensors are being de-
signed and fabricated at an rapid rate to enhance the
data acquisition process for systems in various domains
like biology [1–5], mechanics [6–10], and transportation
[11–15]. The tools, techniques, and theories that inte-
grate all the data to augment our knowledge of the sys-
tem is the broad area of sensor fusion [16]. Sensor fusion
plays a pivotal role in many applications. In the human
gait system, senor fusion methods are deployed to study
gait dynamics [17–21], detect gait anomalies [22–24] and
control prosthetics [25–30]. Numerous sensors are uti-
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lized in inertial navigation systems with data fusion ar-
chitectures for accurate state estimation to aid in naviga-
tion and control [31–38]. Maximizing the throughput of
manufacturing processes [39–48], minimizing traffic con-
gestion [12–14], and monitoring structural health [49–51]
are some of the other areas where sensor fusion plays a
critical role.

In recent years, there has been significant interest in de-
veloping sensor fusion techniques for biological systems,
spurred in part by decreasing costs of next-generation
omics measurements [52–55]. While some techniques like
transcriptomics [56] and proteomics [57] inform the ge-
netic activity within the cell, other instruments like flow
cytometers [58], plate readers [59], and microscopes [60]
inform the phenotypic characteristics outside the cell.
Substantial progress towards fusing a combination of
these datasets with prior knowledge of the system has
resulted in static models that provide insights about the
underlying network topology of the interaction between
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the genes and the proteins [52–55,61–64].

An area of research emerging in the last decade is the
problem of sensor fusion for biological networks, that
couple distinct streams of omics measurements with flu-
orescence data. Fluorescence data is often used to pa-
rameterize or identify dynamical system models describ-
ing governing dynamics and network topology, while
omics measurements are used to deduce whole-cell statis-
tics and steady-state phenotypes of cellular metabolism,
stress, and fitness. To that end, our goal in this pa-
per is to develop sensor fusion techniques that integrate
various types of time-series data to construct dynamic
genotype-to-phenotype models.

Koopman operator methods have recently demonstrated
great promise in simultaneously discovering A) the gov-
erning dynamics and B) a spectral decomposition of
a complex physical system represented purely by data
[65, 66]. The key premise of Koopman operator theory
is that a collection of state functions, or observables,
can be constructed, discovered, or estimated, to embed
nonlinear dynamics of a physical system in a high di-
mensional space. The Koopman operator then acts as
a linear operator on the function space of observables,
governing time-evolution of the system dynamics, as a
linear system.

In reality, the Koopman operator is infinite dimensional
and must be approximated numerically. The problem
of finding a Koopman operator and a collection of ob-
servable functions is known as the Koopman operator
learning problem. The classical approach to solve this
problem is to use dynamic mode decomposition (DMD)
[67]. More recently, variations on DMD involve approx-
imating observable functions with a broad set of dictio-
nary functions (E-DMD) [68, 69], which can be gener-
ated using deep learning [70–73], by casting the learn-
ing problem, as a robust optimization problem to handle
sparse data [74,75] or to treat heterogeneously sampled
data [76, 77]. The power of Koopman operators lies in
their ability to capture the underlying modes that drive
the system [78–80], directly from data. Koopman oper-
ators also enable the construction of observers [81–84]
and controllers [85–89] for nonlinear systems in a linear
framework.

Koopman operators can fuse sensor measurements into
a single dataset to learn the underlying dynamics, as
seen in systems like traffic dynamics [90, 91], human
gait [92–94], and robotics [95]. The work of Williams et
al. [96] and Mezic [97] use Koopman operator theory to
elucidate the fusion of the dynamics evolving on two dif-
ferent state-spaces, provided that there is a function map
between the state-spaces. Williams et al. [96] consider
two datasets that are rich enough to reconstruct the sys-
tem state and develop an algorithm to map the eigen-
functions of the Koopman operator identified from each
dataset. Mezic [97] proves a relational mapping between

eigenfunctions of both spaces, when exact conjugacy is
not possible. For dynamics that evolve on two different
state-spaces, they define the factor conjugacy of the dy-
namics for the function that maps the two spaces.

This paper builds on existing Koopman operator fu-
sion theory [96, 97] to examine a special case: we con-
sider learning a sensor fusion model for a physical sys-
tem represented by direct state data and a series of out-
put measurements. We consider the scenario where both
the Koopman operator, observables, and the relational
map between Koopman observable and output measure-
ments are unknown. In a standard Koopman operator
learning problem, the state measurement data is suffi-
cient to approximate the Koopman operator. However,
we examine the effect of adding output measurements
now as a series of behavioral constraints on the dynamics
of the Koopman operator — we aim to know the effect of
incorporating output measurements (sensor fusion) on
the solution of the Koopman operator learning problem.
Specifically, we seek to understand how Koopman eigen-
functions, spectra, and modes change as a consequence
of sensor fusion.

The formulation of an output-constrained Koopman op-
erator is not novel. In the literature, output-constrained
Koopman operators are used for various applications like
observability analysis [83,98], observer synthesis [81,82,
84], and sensor placement [76, 77, 99] for nonlinear sys-
tems. In this paper, we prove that output-constrained
Koopman operators satisfy the following properties:

(i) The output dynamics of the nonlinear system al-
ways span a subspace of observable functions for
the output-constrained Koopman operator

(ii) The observables of the output-constrained Koop-
man operators can capture the dynamics of both
states and outputs

(iii) State-inclusive output-constrained Koopman oper-
ators exist in the region of convergence of the Taylor
series expansion of the dynamics and output func-
tions of any nonlinear system.

Heretofore, there have been few algorithms that identify
output-constrained Koopman operators, to the best of
our knowledge. To identify output-constrained Koop-
man operators (OC-KO) from data, we pose the output-
constrained DMD (OC-DMD) problem as a special
extension of the DMD problem to incorporate output
constraints. We propose two variants of the problem:
the direct OC-DMD solves for the state and output
dynamics concurrently, while the sequential OC-DMD
solves for them sequentially. Sequential OC-DMD ex-
plicitly reveals the effect of having outputs in the KOR
learning problem. To implement OC-DMD in prac-
tice, we build on the deepDMD algorithm developed
by Yeung et al. [71], where neural networks represent
vector valued observables of the Koopman operator.
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We then study the effect of affine transformations on
the output-constrained Koopman operator learning
problem to take into account— how data preprocessing
methods like normalization or standardization mod-
ify the output-constrained Koopman operator. We use
simulation examples to investigate the performance of
OC-DMD algorithms. Our findings include:

(i) The solution space of the direct OC-DMD and
sequential OC-DMD optimization problems are
equivalent

(ii) Affine state transformations yield OC-KOs with an
eigenvalue on the unit circle

(iii) OC-KOs optimized for multi-step predictions are
required to capture the dynamics with limit cycles.

The paper is organized as follows. In section 2, we formu-
late the OC-KO representation. In section 3, we briefly
discuss Koopman operator theory, Koopman operator
sensor fusion and the necessary DMD algorithms. We
discuss the properties of OC-KOs in Section 4 and the
OC-DMD algorithms in Section 5. We show the simu-
lation results in Section 6 and conclude our analysis in
Section 7.

2 Problem Formulation

Our goal in this paper will be to consider physical sys-
tems represented by sampled time-series data, even
their underlying governing dynamics are continuous.
For methods that estimate the Koopman generator (the
continuous-time extension of the discrete-time Koop-
man operator), we refer the reader to [100]. Suppose we
have an autonomous discrete-time nonlinear dynamical
system with output

State Equation: xk+1 = f(xk) (1a)

Output Equation: yk = h(xk) (1b)

where x ∈ M ⊆ Rn is the state, y ∈ Rp is the output,
f : M → M and h : M → Rp are analytic functions
and k is the discrete time index indicating the time point
kTs with Ts being the sampling time. Let

ψ(xk+1) = Kψ(xk)

yk = Whψ(xk)
(2)

be the OC-KO of (1) where ψ : M → RnL is a vector
function of state-dependent scalar observable functions
( nL ≤ ∞), K ∈ RnL×nL is the Koopman operator
and Wh ∈ Rp×nL is a projection matrix that projects
observables to the space of output functions. We record
state and output measurements (x and y, respectively)
from (1) as

XP = [x0, · · · , xN−1], XF = [x1, · · · , xN ],

YP = [y0, · · · , yN−1],
(3)

where XP ∈ Rn×N is the state data collected from time
points 0, ..., N −1, and XF ∈ Rn×N and YP ∈ Rp×N are
the collection of state and output measurements propa-
gated one step forward from the elements in XP , respec-
tively. Here, we use lower-case notation for the state x
and output y variables and upper-case notation for vari-
ables containing sampled time-series snapshots involving
the state variable x with XP , XF and time-series with
output variable y with YP , respectively.

3 Mathematical Preliminaries

We now briefly introduce the formal mathematical ele-
ments of Koopman operator theory, its modal decom-
position, Koopman operator sensor fusion and relevant
DMD algorithms.

3.1 Koopman operator

Given the dynamical system (1a), the KO represented by
K is a linear operator that is invariant in the functional
space F as K : F → F . Any function φ̃ ∈ F such that
φ̃ : M → C is defined as a scalar observable with the
property

(Kφ̃)(x) = (φ̃ ◦ f)(x)

where φ̃ ◦ f ∈ F due to invariance of K. Let the set of
basis functions of the function space F be denoted by

Φ , {φ1, φ2, . . . , φM} with M →∞. (4)

Then, any function φ̃ ∈ F can be written as a lin-
ear combination of the basis functions φi ∈ Φ implying
φ̃ = aTΦ with a ∈ R1×M . A vector valued observable
(also referred to as a dictionary of observables) can be
constructed by taking a vector combination of the basis
functions in F :

ϕ(x) = aTΦ(x) =

M∑
i=0

aiφi(x)

where ϕ :M→ Cnϕ , ai ∈ RM , bi ∈ Rnϕ ,

Then, ϕ(x) is invariant under K as

Kϕ(xk) = (KaTΦ)(xk) = aT (KΦ)(xk)

= aT (Φ ◦ f)(xk) = (aTΦ)(xk+1) = ϕ(xk+1).

Thus, every linear combination of basis functions in Φ
is also a Koopman observable; specifically the Koopman
operator is a linear operator on the function space F
spanned by Φ.

These observations also hold, more generally, when φ̃
is a vector-valued observable and F defines a space of
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vector-valued functions. The Koopman operator K, in
this setting, acts on vector-valued functions as opposed
to scalar-valued functions.

The choice of ϕ should be such that the true state x can
be recovered. One such choice of ϕ is given by

ψ(x) =
[
xT ϕT (x)

]T
(5)

where ψ : M → RnL contains the base states x in ad-
dition to ϕ. Such an observable ψ(x) is called a state-
inclusive Koopman observable [101]. For the rest of the
paper, unless explicitly stated, we denote a ϕ to be a dic-
tionary of nonlinear observables (not necessarily state-
inclusive) and ψ to be a dictionary of state-inclusive ob-
servables with the form (5).

3.2 Modal decomposition

The Koopman operator is infinite-dimensional as it acts
on the functional space F . As presented in [68], we take
the basis functions Φ in (4) to also be the set of eigen-
functions for K with λi being the eigenvalue of φi and
Kφi = λiφi ∀i ∈ {1, 2, . . . ,M} M →∞. In this work
we will assume that every Koopman operator describes
the dynamics of an analytical system represented as (1).
Such systems admit Koopman operators with countable
spectra. In this setting, the modal decomposition of the
Koopman operator dynamics becomes

ϕ(xk+1) = ϕ ◦ f(xk) = Kϕ(xk)

=

M∑
i=1

biKφi(xk) =

M∑
i=1

biλiφi(xk) (6)

where bi ∈ Rnϕ are called the Koopman modes, λi are
the Koopman eigenvalues and φi are the corresponding
Koopman eigenfunctions.

3.3 Koopman operators for conjugate dynamical sys-
tems

We review the theory of eigenfunction conjugacy for
conjugate dynamical systems [97]. This theoretical con-
struction informs how we view sensor fusion of dynami-
cal systems, at large. Consider two nonlinear systems

z
(i)
k+1 = fi(z

(i)
k+1), z(i) ∈ Rni , i = 1, 2

with their corresponding Koopman operators Ki. The
two dynamical system are said to be factor conjugate if
there is a function map H : Rn1 → Rn2 , n1 ≥ n2 where

z(2) = H(z(1)) such that H ◦ f1(z(1)) = f2 ◦H(z(1)).

Then, if φ2 is an eigenfunction of the Koopman operator
K2 corresponding to the eigenvalue λ2, K2φ2(z(2)) =

λ2φ2(z(2)) = φ2◦f2(z(2)). Then, we can see that (φ2◦H)
is an eigenfunction of K1:

λ2(φ2 ◦H)(z(1))=φ2 ◦ f2 ◦H(z(1))=(φ2 ◦H) ◦ f1(z(1))

= K1(φ2 ◦H)(z(1)) (7)

The dynamics of the second system spanned by a set of
eigenfunctions can be mapped to the eigenfunctions of
the first system. If H is a Ck diffeomorphism, i.e., H
has an inverse and is k − times differentiable, then we
have aCk diffeomorphic conjugacy. In that case, we have
that for all the eigenfunctions φi such that Kiφi(z(1)) =
λφi(z

(i)), i = 1, 2 have a bijective map:

φ1(z(1)) = φ2 ◦H(z(1)), φ2(z(2)) = φ1 ◦H−1(z(2)). (8)

The bijective map of eigenfunctions allows complete
transfer of information between the two systems. We
use this concept to identify subspaces of the state and
output dynamics that are Ck diffeomorphic conjugate
and deduce how much information can be fused.

3.4 Dynamic Mode Decomposition

There are a class of nonlinear systems that have exact
finite invariant Koopman operators [102]. But in most
cases, the KOs are infinite-dimensional and difficult to
identify numerically. The DMD algorithm introduced in
[67] finds KOs that are exact solutions for linear systems
and local approximators for nonlinear systems. DMD
uses the data matrices Xp and Xf as defined in (3) to
solve K = minK ||Xf −KXp|| = XfX

†
p where † denotes

the Moore-Penrose pseudoinverse.

The extended DMD (E-DMD) algorithm proposed in
[68] identifies KOs that capture the nonlinear dynamics
with better accuracy. E-DMD fuses kernel methods in
machine learning with DMD to identify a rich set of
observables to solve the optimization problem

K = min
K
||ψ(Xf )−Kψ(Xp)|| = ψ(Xf )ψ(Xp)

†.

E-DMD solves the nonlinear regression problem using
linear least squares. [103] shows the relevance of E-DMD
to Koopman operators. E-DMD hinges on the user spec-
ifying the lifting functions, and more often than not, it
leads to an explosion of the lifting functions [101,104].

Recent developments in DMD incorporate deep learning
approaches to identify the observables using deep neural
networks. [71,105–107]. They can approximate exponen-
tially many distinct observable functions. We consider
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the deep DMD formulation from [71]:

min
ψ,K
||ψ(xk+1)−Kψ(xk)||2F (9)

ψ(x) =

[
x

ϕ(x)

]
=

[
x

gn ◦ σ ◦ · · · ◦ σ ◦ g2 ◦ σ ◦ g1(x)

]

where ψ(x) is represented by neural network representa-
tions with the ith hidden layer captured by weights Wi,
biases bi, linear function gi(x) = Wix + bi and activa-
tion function σ. Hence, the estimation of ψ boils down to
learning the parameter set (W1, b1,W2, b2, . . . ,Wn, bn),
while specifying or optimizing the depth of the network
n as a hyper-parameter. By selecting appropriate acti-
vation functions for the nonlinear transformation σ, in
a given layer, e.g., using sigmoidal [108], rectified lin-
ear unit (ReLU) activation functions [109] radial basis
functions (RBFs) [110], ψ(x) leverages universal func-
tion approximation properties of each of these function
classes [71].

To derive the approximate Koopman eigenfunctions for
any of these numerical approximations of the Koopman
operator, suppose KV = V Λ is the eigendecomposition
of K where vi (the ith column of V ) is the right eigen-
vector corresponding to the eigenvalue λi (the ith diag-
onal entry of the diagonal matrix Λ). Then, ψ(xk+1) =
Kψ(xk) has the modal decomposition

ψ(xk+1) = Kψ(x) = V ΛV −1ψ(x) =
∑
i

viλiφi(x)

(10)
where φi(x) is the ith entry of the vector V −1ψ(x). Com-
paring with (6), φi(x) and vi are the eigenfunction and
the Koopman mode corresponding to the eigenvalue λi.
Thus, a spectral decomposition on any finite approxi-
mation K of the true Koopman operator K gives an ap-
proximation to a subset of the true eigenfunctions of K.

We remark that the true Koopman observables and true
Koopman eigenfunctions for a given system often span
an infinite dimensional space. In the case of analytic
state update equations for the system (1), the dimen-
sion of the Koopman operator is usually countably infi-
nite. Only in special cases is exactly finite. This means
that any finite-dimensional set of functions may not ex-
actly span or recover the Koopman observable function
space. In the sequel, we will refer to a finite collection
of Koopman observable functions ψ1(x), ...., ψnL(x) as a
dictionary of Koopman observables. However, these are,
in practice, an approximation of a true spanning set for
the Koopman observable function space.

4 Output Constrained Koopman Operator
Representations

We consider the fusion of state and output measure-
ments from the nonlinear system (1) using the Koopman
operator sensor fusion method as delineated in Section
3.3. To do so, we need to establish a factor conjugate map
between the state dynamics and the output dynamics.

We suppose the state dynamics is captured by the KO
ψ(xk+1) = Kψ(xk). To integrate the state dynamics
with the outputs (that are nonlinear functions of the
state), we consider the OC-KO (2).

The model structure of OC-KO is such that its dictio-
nary of observables ψ(x) span the nonlinear output func-
tions h(x) by augmenting the KO with a linear output
equation yk = h(xk) = Whψ(xk). To establish a con-
jugacy between the state and output dynamics, all we
need is to do is construct the dynamics of the output.
The output dynamics can be given by

yk+1 = Whψ(xk+1) = WhKψ(xk) = WhKWψyk (11)

where ψ(xk) = Wψyk. We begin by considering the sim-
plest case of inverting the Wh matrix in yk = Whψ(xk)
to identify the Wψ matrix.

Theorem 1 Given a nonlinear system (1) with a Koop-
man operator (2). Suppose ψ(x) ∈ RnL is the vector of
Koopman observable functions for (2), not necessarily
state-inclusive. For the number of outputs p ≥ nL, the
following statements are true.

(i) If rank(Wh) = nL, then each scalar Koopman
observable function ψi(x) lies in the span of the out-
put functions h(x)

(ii) If rank(Wh) = r < nL, then there exists a sim-
ilarity transform T that takes the model (2) to the
form

ψ̃(xk+1) = K̃ψ̃(xk)

yk = W̃hψ̃(xk)
(12)

where K̃ = TTKT , ψ̃(x) = TTψ(x), W̃h = WhT
such that r components of the vector Koopman ob-
servable ψ̃(x) given by ψh(x) lie in the span of h(x).

PROOF. Case (1): Since Wh has full column rank, an
exact left inverse exists such that

ψ(xk) = (WT
h Wh)−1WT

h h(xk) ∀ xk ∈M

and hence ψi ∈ span{h1, h2, ..., hp} ∀ i ∈ {1, 2, ..., nL}.
Case (2): Suppose rank(Wh) = r < nL. The singular
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value decomposition of Wh yields

Wh =
[
Ur Up−r

]
p×p

[
Σr 0

0 0

]
p×nL

[
V Tr

V TnL−r

]
nL×nL

⇒ h(xk) =
[
Whψ 0

] [ψh(xk)

ψ̄h(xk)

]
∀ xk ∈M (13)

s. t. Whψ=UrΣr, ψh(x)=V Tr ψ(x), ψ̄h(x)=V TnL−rψ(x).
(14)

Whψ has a full column rank r > p and hence

ψh(xk) = (WT
hψWhψ)−1WT

hψh(xk) ∀ xk ∈M.

Therefore, under a similarity transformation T =[
Vr VnL−r

]
, the model (2) takes the form of (12) with

T−1 = TT where the first r lifting functions of ψ̃ given
by ψh lie in the span of h. 2

Remark 1 The rank(Wh) ≥ p only if h(x) is linearly
independent ∀x ∈M.

We see that ifWh is full column rank, the outputs can be
determined completely by the OC-KO observables and
the Wψ in (11) exists. In the event that nL < p, the
map y = Whψ(x) is a map from a low dimensional space
ψ(x) ∈ RnL to a high dimensional space y ∈ Rp and
factor conjugacy is not defined for that case (in Section
3.3). Hence, we project the outputs to a lower dimen-
sional space z = WT

h y ∈ RnL to find a conjugate map.
The following two corollaries illustrate how output func-
tions can be used to identify all or a subset of Koopman
observables (in Section 3.3).

Corollary 1 If rank(Wh) = nL < p, we can construct a
diffeomorphic map between the states and projected out-
puts z = WT

h y. The z dynamics are given by

zk+1 = WT
h WhK(WT

h Wh)−1zk.

For z = H(ψ(x)) = WT
h Whψ(x), H : RnL → RnL , the

dynamics of ψ(x) and z are diffeomorphic conjugate and
the eigenfunctions that capture their dynamics have a
bijective map using (8). 2

Corollary 2 For rank(Wh) = nL = p, Wh becomes
an invertible square matrix and the output dynamics in
Corollary 1 simplifies to

yk+1 = g(yk) = WhKW
−1
h yk.

Hence, the dynamics of y and ψ(x) are diffeomorphic
conjugate. 2

The dynamics of the output can be constructed when
Wh is full column rank. The dynamics of the entire out-
put or the projected output has a diffeomorphic conju-
gacy with the dynamics of the OC-KO observables ψ(x)
depending on whether p = nL or p > nL respectively
under the map y = Whψ(x). The solution to the dictio-
nary of Koopman observables that capture the state dy-
namics are generally nonunique; they have infinite KOs
for a given system (1a). The fusion of the states and the
outputs impose a constraint on the observables of the
KOs. We explore this in the following corollary.

Corollary 3 Given a finite number of nontrivial output
equations (1b), let Kf and Kf,h denote the set of all KOs
consistent with (1a) and (1) respectively. Any KO that
satisfies (1) also satisfies (1a)⇒ Kf,h ⊂ Kf . In the case
of Corollary 2, the output space captures the complete
eigenfunction space of a KO that solves (1a). ButKf con-
tains more KOs whose eigenfunctions can be constructed
by taking repeated product of the current eigenfunctions
which cannot be spanned by the outputs ⇒ Kf,h 6= Kf .
Hence Kf,h ⊂ Kf . 2

We explicitly see that the output equations place a con-
straint on the OC-KO observables and that the dynamics
of the outputs can be constructed when rank(Wh) = nL.
In the case (ii) of Theorem 1 where rank(Wh) < nL,
using (13) to construct the output dynamics, we see that

yk+1 = UrΣrV
T
r KVrψh(xk) + UrΣrV

T
r KVn−rψ̄h(xk)

(15)
where ψ̄h(xk) is a leakage term that cannot be repre-
sented in the output space. Hence, the output cannot
be constructed. To capture more information on ψ̄h(xk),
we need to construct the time-delay embedded outputs
as the lifting functions [111–113]. This is a typical ap-
proach used to construct KORs when outputs partially
measure the states [90, 94, 111–114]. In the case of pure
output measurements, the time-delay embedded outputs
capture the maximum dynamics that is observed by the
outputs. But, when we fuse it with the state dynam-
ics, there is no guarantee that that the output dynamics
capture the entire state dynamics. Hence, we consider a
more general case where the outputs capture a portion
of the state dynamics. Since the OC-KO has the struc-
ture of a linear time invariant system, we invoke the ob-
servable decomposition theorem from [115] to separate
out the dynamics of the observable lifted states that can
be fused with the output dynamics.

Theorem 2 Given a nonlinear system (1) with KO (2).
Suppose ψ(x) is the dictionary of Koopman observables
for (2), not necessarily state-inclusive.

Then there exists a similarity transformation T and
a projection matrix Wψ ∈ Rno×(N+1)p for some
N ∈ Z≥0, no ≤ nL such that the dynamics of

(i) a subset of the observables ψo(x) ∈ Rno of the trans-
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formed Koopman operator (under T )[
ψo(xk+1)

ψ̄o(xk+1)

]
=

[
Ko 0

Kō K22

][
ψo(xk)

ψ̄o(xk)

]

yk =
[
Who 0

] [
ψo(x)

ψ̄o(x)

] (16)

T−1KT=

[
Ko 0

Kō K22

]
,WhT=

[
Who 0

]
, T−1ψ(x)=

[
ψo(x)

ψ̄o(x)

]

(ii) and the projected time-delay embedded output

zk = Wψ

[
yk yk+1 · · · yk+N

]T
(17)

are diffeomorphically conjugate.

PROOF. The Koopman operator representation (2) is
a linear time invariant model. Using the observable de-
composition theorem (Theorem 16.2 in [115]), there ex-
ists a similarity transformation T that takes the system
(2) to the form (16) such that the subsystem

ψo(xk+1) = Koψo(xk) , g1(ψo(xk))

yk = Whoψo(xk)

is completely observable; ψo(x) ∈ Rno can be uniquely
reconstructed from the outputs. Note that the system
being observable is different from the observable func-
tions in the context of Koopman. Then, there exists a
N ∈ Z≥0 such that Np ≥ no and

yk
yk+1

...

yk+N

=


Who

WhoKo
...

WhoK
N
o

ψo(xk)=Oψo(xk)

where O ∈ RNp×no has full column rank no. Then we
can define a projection Wψ = OT to get (17) such that

zk = OTOψo(xk) , H(ψo(x))

whereOTO ∈ Rno×no is square invertible. The dynamics
of z is given by

zk+1 = OTOψo(xk+1) = OTOKoψo(xk)

= OTOKo(OTO)−1zk , g2(zk)

For the mapH : Rno → Rno , there exists an inverse map
H−1 : Rno → Rno , H−1(z) = (OTO)−1zk since OTO is

full rank and invertible. Using the above, we can see that

H ◦ g1(ψo(xk)) = g2 ◦H(ψo(xk)) = OTOψo(xk+1)

g1 ◦H−1(zk) = H−1 ◦ g2(zk) = (OTO)−1zk+1.

Hence, the dynamics of z and ψo(x) are diffeomorphi-
cally conjugate. 2

Remark 2 The original time-delay embedded output
evolves in a high dimensional space RNp when compared
to ψ(xo) ∈ Rno since we are seeking a sufficiently large
set of output measurements N , such that N × p ≥ no.
In that case, the factor conjugate map cannot be estab-
lished similar to the case in Corollary 1. This observa-
tion motivates the construction of a time-delayed output
embedding.

When outputs partially measure the states, we see that
time-delay embedded outputs have a diffeomorphic map
with a subspace of the lifting functions under a similarity
transform and the dynamics evolving in the two spaces
are diffeomorphically conjugate.

Corollary 4 When no = nL, zk has a diffeomorphic
map with the entire dictionary of observables ψ(xk). In
this case, zk can constitute a Koopman observable basis
such that it captures the dynamics of ψ(xk).

Corollary 5 The scenario where N = 0 results in case
(ii) of Theorem 1 with ψh(xk) = ψo(xk). This simplifies
the output dynamics (15) to

yk+1 =

{
WhoK(WT

hoWho)
−1WT

hoyk , p > no
WhoKW

−1
ho yk , p = no

We see that the OC-KO architecture can fuse the state
and output dynamics even if the outputs do not capture
the entire state dynamics. The above analysis shows that
the OC-KO structure is such that the lifting functions
capture the dynamics of the time-delay embedded out-
puts. This is an implicit constraint in the model struc-
ture of OC-KO.

State-inclusive observables (5) are useful since we can
recover the dynamics by simply dropping the nonlinear
observables. We show a sufficient condition for the ex-
istence of state-inclusive OC-KOs using a similar argu-
ment developed in [83]. We prove the following lemma
which plays a crucial role in showing the invariance of
the basis in the series expansions of analytic functions.

Lemma 1 Given a dictionary of observable functions

D = {ψ1(x), ψ2(x), . . .} where ψr(x) =

n∏
i=1

x
pr,i
i with

pr,i ∈ Z≥0, the product of functions from D lies in D.
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PROOF. Consider two functions ψα(x), ψβ(x) ∈ D.
Their product is given by

ψα(x)ψβ(x)=

n∏
i=1

x
pα,i
i

n∏
i=1

x
pβ,i
i =

n∏
i=1

x
(pα,i+pβ,i)
i ∈ D.

Since the product of two functions lies in D, the product
of any number of functions from D also lies in D as can
be seen by taking repeated product of functions. 2

If the monomial basis in the Taylor series expansion are
propagated by one time step, we encounter a product of
these monomials and Lemma 1 defines a set that cap-
tures all these monomial functions and their products.
We use the this lemma to build on the result from [83],
which shows the existence of state-inclusive KO for (1a),
to find state-inclusive OC-KOs for (1).

Proposition 1 Given the nonlinear system of the form
(1), if the functions f and h are real analytic on the open
setM, then there exists an OC-KO representation of the
form (2) in the region of convergence of the Taylor series
expansion of f and h.

PROOF. Let us consider a dictionary of polynomial
lifting functions D = {ψ1(x), ψ2(x), . . .}, ψr(x) =
n∏
i=1

x
pr,i
i where pr,i ∈ Z+. Since f is real analytic inM,

for any x0 ∈ M, there exists a Taylor series expansion
centered about x0 that converges to f(x) for any neigh-

borhood of x0. Suppose f(x) =
[
f1(x) · · · fn(x)

]T
, the

Taylor series expansion of f about x0 yields

fi(x)=fi(x0)+
∂fi
∂x

∣∣∣∣∣
x0

x+xT
∂2fi
∂x2

∣∣∣∣∣
x0

x+· · ·=
∞∑
j=1

cijψj(x).

where each term lies inD. Suppose xk =
[
xk,1 · · ·xk,n

]T
where xk,i indicates the ith state at discrete time index
k. xk propagated by one time step yields a linear com-
bination of functions in D as

xk+1,i = fi(x) =

∞∑
j=1

cijψj(xk).

To construct a linear system, we propagate each function
on the right hand side ψj(xk) by one time step

ψj(xk+1) =

n∏
i=1

x
pj,i
k+1,i =

n∏
i=1

( ∞∑
j=1

cijψj(xk)
)pj,i

Since Lemma 1 states that the product of any number
of functions in D lies in D, ψj(xk+1) =

∑∞
r=1 kirψr(xk).

Concatenating the expressions of xk+1,j and ψj(xk+1)
for all j, we get the Koopman representation ψ(xk+1) =
Kψ(xk).

Similarly, for the output equation, we can expand each

function hi in h(x) =
[
h1(x) h2(x) · · ·hm(x)

]T
using

the Taylor series expansion about x = x0 to yield

hi(x)= hi(x0)+
∂hi
∂x

∣∣∣∣∣
x0

x+xT
∂2hi
∂x2

∣∣∣∣∣
x0

x+ · · · =
∞∑
j=1

wijψj(x)

⇒ yk = Whψ(xk)

Hence, if f and h of the nonlinear system (1) are analytic
in the open setM, a state inclusive OC-KO of the form
(2) exists for that system. 2

We see that state-inclusive OC-KOs exist for nonlinear
systems whose dynamics (f) and output (h) functions
are real analytic. This is a sufficient condition and not
a necessary one. In the next section, we explore how to
identify OC-KOs from data using the DMD formulation.

5 DMD with output constraints

The OC-KO identification involves fusing two datasets
(states and outputs) to learn the dynamics of the non-
linear system (1). The DMD algorithms typically iden-
tify KOs on one dataset. We introduce the more general
OC-DMD formulation that incorporates the output con-
straint in the DMD problem to identify the OC-KOs.
The OC-DMD formulation is

min
K,Wh,ψ

||ψ(XF )−Kψ(XP )||2F

such that YP = Whψ(XP )
(18)

where ||.||F is the Frobenius norm. The equality con-
straint is very stringent as the presence of output mea-
surement noise could result in overfit models. Hence, we
pose the weaker problem

min
ψ,K,Wh

∣∣∣∣∣
∣∣∣∣∣
[
ψ(XF )

YP

]
−

[
K

Wh

]
ψ(XP )

∣∣∣∣∣
∣∣∣∣∣
2

F

(19)

which concurrently solves for ψ(x),K and Wh. We re-
fer to this as the direct OC-DMD problem formula-
tion. To explicitly show the effect of the output dynam-
ics in learning OC-KOs, we also propose the sequential
OC-DMD problem formulation where the following sub-
problems are solved sequentially:
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1. Identification of Koopman dynamics:

min
ψx,K1

||ψx(XF )−K1ψx(XP )||2F (20a)

2. Output Parameterization:

min
ϕy,Wh1

∣∣∣∣∣∣YP −Wh1

[
ψx(XP )

ϕy(XP )

] ∣∣∣∣∣∣2
F

(20b)

3. Approximate Koopman Closure:

min
ϕxy,K2

∣∣∣∣∣
∣∣∣∣∣
[
ϕy(XF )

ϕxy(XF )

]
−K2


ψx(XP )

ϕy(XP )

ϕxy(XP )


∣∣∣∣∣
∣∣∣∣∣
2

F

. (20c)

This problem is called sequential OC-DMD, because it
obtains a solution for the output-constrained Koopman
learining problem as a sequence of optimization prob-
lems. The solution generated by sequential OC-DMD,
yields an OC-KO of the form:

ψ(xk+1) = Kψ(xk)

yk = Whψ(xk)

where

ψ(x) =


x

ϕx(x)

ϕy(x)

ϕxy(x)

 , K =


K1 K12 0 0

K21 K22 0 0

K31 K32 K33 K34

K41 K42 K43 K44

 ,

K1 =

[
K11 K12

K21 K22

]
, K2 =

[
K31 K32 K33 K34

K41 K42 K43 K44

]
,

Wh =
[
Wh11 Wh12 Wh13 0

]
(21)

where ψ(x) =
[
xT ϕT (x)

]T
, x ∈ M ⊂ Rn, ϕx :

M → Rnx , ϕy : M → Rny , ϕxy : M → Rnxy ,
n + nx + ny + nxy = nL and the output matrix

Wh1 =
[
Wh11 Wh12 Wh13

]
.

Sequential OC-DMD works to first solve for the KO of
the state dynamics (20a), without accounting for any
output measurements. This represents the Koopman op-
erator obtained from standard dynamic mode decompo-
sition (or E-DMD) algorithms. The next step in sequen-
tial OC-DMD (20b) solves for the projection equation to
parameterize output functions in terms of the existing
Koopman observables ψx(x), as well as any necessary
additional output observables ϕy(x) required to predict
the output equation. The last step (20c) then incorpo-
rates additional state-dependent observable dictionary

functions ϕxy(x) to guarantee closure of the new Koop-
man ϕy(x) observables from step 2 (20c).

5.1 Equivalence of Solution Spaces for Sequential and
Direct OC-DMD

We now elucidate the relationship between the solution
space of sequential and direct OC-DMD optimization
problems. To do so, we make use of the following propo-
sition regarding coordinate transforms which considers
a manifold M of dimension n (dim(M) = n).

Proposition 2 (Proposition 2.18 from [116])
Suppose that dim(M) = n and that f1, ..., fn, k ≤ n are
independent functions about p ∈M . Then there exists a
neighborhood U about p, and functions xk+1, ..., xn such
that (U, f1, ..., fk, xk+1, ..., xn) is a coordinate chart.

We use the coordinate transformation to separate out
the observables that capture the state dynamics and the
output equations minimally to show the mapping be-
tween the OC-KOs from both OC-DMD problems. We
go ahead to prove the equivalency of the OC-DMD al-
gorithms.

Theorem 3 The optimization problems (19) and (20)
are equivalent in the minimal solution space where the
observables are independent.

PROOF. To prove the equivalency of (19) and (20),
we need to show that for every solution of (19) given by
(2), there is a solution for (20) given by (21) and vice
versa. It is easy to see that (21) fits into the structure
of (2) directly without any modification. Hence, we only
need to prove the reverse. Suppose the OC-KO[

xk+1

ϕy∗(xk+1)

]
=

[
K̃11 K̃12

K̃21 K̃22

][
xk

ϕy∗(xk)

]

yk =
[
W̃h1 W̃h2

] [
xTk ϕTy∗(xk)

]T (22)

where ϕy∗ :M→ Rny∗ is the minimal dictionary of ob-
servables that solves (19). Let us consider the minimal
dictionary of observables to capture the state dynamics
(1a) be ϕx(x) = T11ϕy∗(x), ϕx : M → Rnx such that
nx ≤ ny∗ . nx = ny∗ when ϕy∗ is the minimal dictionary
that captures (1a). Since the functions ϕy∗(x) is the min-
imal OC-KO solution dim(ϕy∗(x)) = ny∗ with nx in-
dependent functions ϕx(x) = ϕx(ϕy∗(x)) = T11ϕy∗(x).

Using Proposition 2, a coordinate transformation T̃1 =[
T̃11 T̃12

]
exists such that

ϕy∗(x)=
[
T̃11 T̃12

] [ϕx(x)

ϕ̃y(x)

]
,

[
ϕx(x)

ϕ̃y(x)

]
=

[
T11

T12

]
ϕy∗(x)
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where T̃−1 =
[
TT11 T

T
12

]T
. Since ϕx(x) is sufficient to

capture the KO for (1a), K̃12T̃12 = T11K̃22T̃12 = 0 and
the transformed dynamics are

xk+1

ϕx(xk+1)

ϕ̃y(xk+1)

=


K̃11 K̃12T̃11 0

T11K̃21 T11K̃22T̃11 0

T12K̃21 T12K̃22T̃11 T12K̃22T̃12




xk

ϕx(xk)

ϕ̃y(xk)


yk=

[
W̃h1 W̃h2T̃11 W̃h2T̃12

] [
xTk ϕTx (xk) ϕ̃y(xk)

]T
Suppose there exists functions ϕy(x) = T21ϕ̃y(x) ∀ x ∈
M where ϕy :M→ Rny , ny ≤ (ny∗ − nx) that in addi-
tion to the functions x, ϕx are sufficient to capture the
output equation, a similar procedure to the above can be
adopted to result in the model structure (21).Therefore,
the two optimization problems are equivalent. 2

This theorem shows that if an OC-KO representation ex-
actly captures state and output dynamics, without any
redundancy in any of the dictionary functions, for every
solution in sequential OC-DMD, we can find a solution
in direct OC-DMD and vice versa [117]. We thus see that
(19) and (20) are equivalent optimization problems. The
equivalency does not imply they are the same optimiza-
tion problem because the objective function that they
solve are different [117].

Specifically, the model structure of a solution obtained
from sequential OC-DMD (21) is more sparse than the
model structure of a solution obtained from direct OC-
DMD (2). The model (21) explicitly reveals that the
output dynamics constrain the OC-KO learning prob-
lem through the dictionary functions ϕy and ϕxy. The
advantage of direct OC-DMD problem is that it solves
only one optimization problem as opposed to sequential
OC-DMD which solves three. We shall compare the per-
formances of these algorithms in Section 6 with theoret-
ical and numerical examples.

5.2 Coordinate Transformations of Standardization
Routines on System State and Output Data

A common practice in model identification problem is
to scale the variables using standardization or normal-
ization techniques to ensure uniform learning of all vari-
ables. Standardization of a scalar variable x̃ yields

x̃standardized =
x̃− µ(x̃)

σ(x̃)
(23)

where µ and σ are the mean and standard deviation
of x̃. It is important to keep track of how such affine
transformations modify the structure of OC-KO when
comparing theoretical and practical results.

Proposition 3 Given the nonlinear system with output
(1) has a Koopman operator representation with observ-
ables given by[

xk+1

ϕ(xk+1)

]
=

[
K11 K12

K21 K22

][
xk

ϕ(xk)

]
(24)

yk =
[
Wh1 Wh2

] [ xk

ϕ(xk)

]
(25)

if the states and outputs undergo a bijective affine trans-
formation x̃ = Px + b and ỹ = Qy + c where P,Q are
non-singular, then the state dynamics are transformed to

ψ̃(x̃k+1) = K̃ψ̃(x̃k)

ψ̃(x̃k) =
[
x̃k+1 ϕ̃(x̃k+1) 1

]T
(26)

K̃ =


PK11P

−1 PK12 (I− PK11P
−1)b

K21P
−1 K22 K21P

−1b

0 0 1


and the output equations become

ỹk = W̃hψ̃(x̃k) (27)

W̃h =
[
QWh1P

−1 QWh2 (QWh1P
−1b+ c)

]
.

PROOF. When the state undergoes an affine trans-
formation x̃ = Px + b, since the transformation is
bijective(P−1 exists), the dynamics of the transformed
state (x̃) are given by substituting x = P−1x̃− P−1b in
(24) to yield[

P−1x̃k+1−P−1b

ϕ(P−1x̃k+1−P−1b)

]
=

[
K11 K12

K21 K22

][
P−1x̃k−P−1b

ϕ(P−1x̃k−P−1b)

]
.

We define new observable functions ϕ̃(x̃) , ϕ(P−1x̃ −
P−1b) and the complete vector valued observable as

ψ̃(x̃) ,
[
x̃ ϕ̃(x̃) 1

]T
. By algebraic manipulation, we get

the transformed state dynamic as given in (26).

If the output undergoes an affine transformation ỹ =
Qy+c, we derive the transformed output in terms of the
transformed state:

ỹk = Qh(xk) + c = Q
[
Wh1 Wh2

] [P−1x̃k − P−1b

ϕ̃(x̃)

]
+ c

By simple algebraic manipulation, we end up with the
affine transformed output equation(27). 2
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We see that the bias in the affine transformation con-
strains an eigenvalue of the transformed OC-KO to be
equal to 1. This is very important to track when using
gradient descent based optimization algorithms to solve
for OC-KOs because they identify approximate solutions
and this could push the unit eigenvalue outside the unit
circle making it unstable. To avoid numerical error in
such algorithms, we should constrain the last row of the
Koopman operator as in (26).

In both the OC-DMD problems (19) and (20), the state-
inclusive observables ψ are considered as free variables.
To learn the observables, we use the deepDMD formu-
lation (9) of representing ψ as outputs of neural net-
works. When we incorporate the deepDMD formulation
to solve the OC-DMD problems, we refer to them as
OC-deepDMD algorithms and the identified OC-KOs as
OC-deepDMD models.

6 Simulation Results

We consider three numerical examples in increasing or-
der of complexity to evaluate the performance of the di-
rect and sequential OC-deepDMD algorithms. The first
example has an OC-KO with exact finite closure; there is
a finite-dimensional basis in which the dynamics are lin-
ear. We use this as the benchmark for the comparison of
the two algorithms. The other two examples do not pos-
sess finite exact closure. In those cases, we benchmark
the proposed algorithms against nonlinear state-space
models (with outputs) identified by solving

min
f,h
||XF − f(XP )||2F + ||YP − h(XP )||2F (28)

where the functions f and h are jointly represented by a
single feed-forward neural network with (n+ p) outputs
and we refer generally to this model, across multiple ex-
amples, as the nonlinear state-space model (see captions
in Figures 4 and 6).

The neural networks in each optimization problem
are constrained to have an equal number of nodes
in each hidden layer. The hyperparameters for all
the optimization problems can be jointly given by
{nij |i ∈ {x, y, xy}, j ∈ {o, l, n}} where nio, nil and
nin indicate the number of outputs, number of hidden
layers and number of nodes in each hidden layer for
the dictionary of observables indicated by i (ψx, ϕy or
ϕxy). Sequential OC-deepDMD comprises i ∈ {x, y, xy}
j ∈ {o, l, n}, direct OC-deepDMD comprises i ∈ {x}
j ∈ {o, l, n} and nonlinear state-space model comprises
i ∈ {x} and j ∈ {l, n}.

In each example, the simulated datasets are split equally
between training, validation, and test data. For each al-
gorithm, we learn models on the training data with var-
ious combinations of the hyperparameters. We train the

models in Tensorflow using the Adagrad [118] optimizer
with exponential linear unit (ELU) activation functions.
We use the validation data to identify the model with op-
timal hyperparameters for each optimization problem,
which we report in Table 1. To quantify the performance
of each model, we use the coefficient of determination
(r2) to evaluate the accuracy of the model predictions:

r2 = 1− ||X̃ −
ˆ̃X||2F

||X̃||2F

where X̃ is the variable of interest (XF or YP ) and ˆ̃X
is the prediction of that variable. We evaluate r2 for the
accuracy of

• the output prediction: yk = h(xk) for the nonlinear
state-space model and yk = Whψ(xk) for the OC-
deepDMD models
• 1-step state prediction: xk+1 = f(xk) for the non-

linear state-space model and ψ(xk+1) = Kψ(xk)
for the OC-deepDMD models.
• n-step state prediction: xi = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

i times

(x0)

for the nonlinear state-space model and ψ(xi) =
Kiψ(x0) for the OC-deepDMD models where x0 is
the initial condition and i is the prediction step.

The n-step state prediction is a metric to test the invari-
ance of the OC-KO; if the OC-KO is invariant, the r2 for
n-step predictions turns out to be 1. We do not consider
the n-step output prediction as the error provided by
that metric will be a combination of the errors in both
state and output models.

Example 1 System with finite Koopman closure

Consider the following discrete time nonlinear system
with an analytical finite-dimensional OC-KO [102]:[

xk+1,1

xk+1,2

]
=

[
a11 0

a21 a22

][
xk,1

xk,2

]
+

[
0

γx2
k,1

]
yk = xk,1xk,2

where xk,i and yk denote the ith state and the output at
discrete time point k respectively. We obtain the theo-
retical OC-KO using sequential OC-DMD (20):

• Solving (20a) - Adding the observable ϕ1(x) = x2
1

makes the dynamics linear:
xk+1,1

xk+1,2

ϕ1(xk+1)

 =


a11 0 0

a21 a22 γ

0 0 a2
11



xk,1

xk,2

ϕ1(xk)

 (29)
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Table 1
Optimal hyper-parameters and performance of the oc-deepDMD models for all numerical examples

System Model Hyperparameters r2test(x) r2test(x) r2test(y)

(1-step) (n-step)

Finite

Closure

Deep DMD (nL = 3) nx = 1, nxl = 8, nxn = 2 1 1 -

Direct OC-deepDMD (nL = 3) nx = 1, nxl = 8, nxn = 2 0.899 0.926 −0.147

Direct OC-deepDMD (nL = 5) nx = 3, nxl = 7, nxn = 5 1 1 1

Sequential OC-deepDMD

(nL = 5)

nx = 1, nxl = 8, nxn = 2, ny = 1, nyl = 9,

nyn = 4, nxy = 1, nxyl = 7, nxyn = 2
1 1 1

MEMS

Actuator

Nonlinear state-space nxl = 6, nxn = 6 1 0.998 1

Direct OC-deepDMD nx = 6, nxl = 3, nxn = 6 1 0.84 0.995

Sequential OC-deepDMD
nx = 5, nxl = 3, nxn = 12, ny = 1, nyl = 8,

nyn = 6, nxy = 3, nxyl = 8, nxyn = 3
0.999 0.883 0.999

Activator-

Repressor

clock

Nonlinear state-space nxl = 5, nxn = 6 1 0.854 0.999

Direct OC-deepDMD nx = 9, nxl = 6, nxn = 12 0.999 0.53 0.983

Sequential OC-deepDMD
nx = 3, nxl = 9, nxn = 8, ny = 1, nyl = 9,

nyn = 4, nxy = 3, nxyl = 9, nxyn = 3
1 0.349 0.998

Time-delay embedded

Direct OC-deepDMD

nx = 4, nxl = 8,

nxn = 9, nd = 6
0.995 0.9116 0.8791

• Solving (20b) - Adding ϕ2(x) = x1x2 to
{x1, x2, ϕ1(x)} yields a linear output equation

yk =
[
0 0 0 1

] [
xk,1 xk,2 ϕ1(xk) ϕ2(xk)

]T
.

• Solving (20c) - To identify the dynamics of the
added observable ϕ2(x) and ensure a closed basis,
we add ϕ3(x) = x3

1 to get the OC-KO:

ψ(xk+1) =



a11 0 0 0 0

a21 a22 γ 0 0

0 0 a2
11 0 0

0 0 a11a21 a11a22 a11γ

0 0 0 0 a3
11


ψ(xk)

yk =
[
0 0 0 1 0

]
ψ(xk) (30)

whereψ(xk)=
[
xk,1 xk,2 ϕ1(xk) ϕ2(xk) ϕ3(xk)

]T
.

We simulate the system to generate 300 trajectories,
each with a different initial condition uniformly dis-
tributed in the range 5 ≤ x0,i ≤ 10, i = 1, 2 and system
parameters a11 = 0.9, a21 = −0.4, a22 = −0.8, γ =
−0.9. The performance metrics of the identified models
are given in Table 1 and their n− step predictions on a
test set initial condition are shown in Fig. 1.

The deepDMD algorithm captures well the dynamics for
nL = 3 and it matches with the theoretical solution (29).
We learn the optimal direct OC-deepDMD model for
nL = 5 Koopman dictionary observables. Fig. 1 shows
that the direct OC-deepDMD model with nL = 3 shows
poor performance. Hence, we need additional observ-
ables to capture the output dynamics (given by ϕ2(x)
and ϕ3(x) in (30)), thereby validating Theorem 2. We
increase nL and identify both direct and sequential OC-
deepDMD models. We observe that nL = 5 is the opti-
mal value for both OC-deepDMD algorithms with r2 ≈ 1
and agreeing with the theoretical solution (30).

We evaluate the extent to which the OC-deepDMD al-
gorithms capture the underlying system dynamics by
comparing the eigenfunctions of the corresponding OC-
deepDMD models with those of the theoretical OC-KO
(30). Since the OC-deepDMD models are identified on
standardized data, we use Theorem 3 to reflect the trans-
formation in the theoretical OC-KO. We compute the
eigenfunctions of all the models using modal decompo-
sition (10). We observe that scaling and sign flip are two
artifacts that lead to non-uniqueness of eigenfunctions
as ψ(xk+1) =

∑
i viλiφi(x) =

∑
i(−α−1vi)λi(−αφi(x))

where α is a nonzero scalar. We compensate for scaling
by dividing each eigenfunction with its maximum abso-
lute value to normalize it. When r2 is computed under a
sign flip, it leads to negative values. To account for the
sign flip, we use the Pearson correlation (ρ) to compute
the closeness between the normalized eigenfunctions.
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Fig. 1. Example 1: Comparing the n-step predictions of states
(x1, x2) and outputs (y1) for the models: deepDMD with
nL = 3, direct OC-deepDMD with nL = 3, 5, and sequential
OC-deepDMD with nL = 5 where dim(ψ(x)) = nL.

We show the plot of the normalized eigenfunctions for
the OC-deepDMD models and their correlation with the
theoretical eigenfunctions in Fig. 2. We see that the se-
quential OC-deepDMD model captures both eigenval-
ues and eigenfunctions with a better accuracy than the
direct OC-deepDMD model. This could be attributed
to sequential OC-deepDMD model structure (21) being
sparser among the two. Sequential OC-deepDMD can
explicitly track that the eigenfunctions corresponding to
λ = −0.8, 0.81, 0.9 capture the state dynamics by solv-
ing (20a) and those corresponding to λ = −0.72, 0.73 are
added to capture the output dynamics by solving (20b)
and (20c). This validates that the output dynamics do
lie in a subspace of the OC-KO observables as proved in
Theorem 2.

Example 2 MEMS-actuator with a differential capaci-
tor

We consider the free response of a MEMS resonator [119]
modeled by a spring mass damper system with cubic
nonlinear stiffness and a differential capacitive sensor to
measure the displacement [120] as shown in Fig. 3. It has
the dynamics:

ẋ1 = x2

ẋ2 = −k1

m
x1 −

c

m
x2 −

k3

m
x3

1

y = Vo =
C1 − C2

C1 + C2
Vs = − x

d+ x
Vs

where x1, x2 and y are the displacement, velocity and
output voltage measurements respectively. We simulate
the system with the parameters m = 1, k1 = 0.5, c =
1.0, k3 = 1.0 and Vin = 0.4 to generate 300 trajectories

with a simulation time of 15s, a sampling time of 0.5s and
initial condition, x0, uniformly distributed in the range
(0, 2). This system is more complex than Example 1 as
it has a single fixed point without a finite analytical OC-
KO. Therefore, we benchmark the performance of the
OC-deepDMD algorithms against the nonlinear state-
space models identified by solving (28).

We see from Table 1 that r2 ≈ 1 for 1-step state and out-
put predictions of the nonlinear state-spacem, sequen-
tial, and direct OC-deepDMD models. When comparing
the n-step predictions of these models on an initial con-
dition from the test dataset (shown in Fig. 4), the non-
linear state-space model performs significantly better.
Among the OC-KOs, the sequential OC-deepDMD per-
forms marginally better (4% higher accuracy). This in-
dicates that all algorithms nearly accurately solve their
respective objective functions which minimize the 1-step
prediction error. However, the approximation of infinite-
dimensional OC-KOs by finite observables lead to the
OC-deepDMD models not being perfectly invariant. So,
when the number of prediction steps increases, the error
in the temporal evolution of the observables accumulates
and propagates forward. A potential method to reduce
the error in forecasting is to minimize multiple step pre-
diction errors. We showcase this method prominently in
the next example.

Example 3 Activator Repressor clock with a reporter

A more complex system is one with oscillatory dynamics
that converge to an attractor. We consider the two state
activator repressor clock [121] with the dynamics:

dA

dt
= −γAA+

κA
δA

αA(A/KA)n + αA0

1 + (A/KA))n + (B/KB)m

dB

dt
= −γBB +

κB
δB

αB(A/KA)n + αB0

1 + (A/KA)n

C =
(kc/γc)A

1 + (B/Kd)

where A, B and C are the conc. of enzymes with the
network schematic as shown in Fig. 5. A and B consti-
tute the state and C is the output fluorescent reporter
assumed to be at steady state. We simulate the system
using the parameters γA = 0.7, γB = 0.5, δA = 1.0,
δB = 1.0, αA0 = 0.4, αB0 = 0.004, αA = 0.2, αB = 0.2,
KA = 0.1, KB = 0.08, κA = 0.9, κB = 0.5, n = 2,
m = 3, k3n = 3.0 and k3d = 1.08 to get an oscillatory be-
haviour. We generate 300 curves with a simulation time
of 50s, a sampling time of 0.5s and the initial conditions
uniformly distributed in the interval (0.1, 1).

We identify direct and sequential OC-deepDMD models
and nonlinear state-space models and show the optimal
model hyperparameters and r2 values in Table 1. We see
that r2 ≈ 1 for the 1-step and output predictions for all
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Fig. 2. Example 1: The eigenvalues (λ) and corresponding eigenfunctions (φ) computed from the theoretical (first row), direct
OC-deepDMD (second row) and sequential OC-deepDMD (last row) models. The axes constitute the physical states of the
system and the colorbar indicates the value of eigenfunctions normalized by the maximum absolute value attained by the
corresponding eigenfunction. The Pearson correlation (ρ) is computed between φ of the OC-deepDMD and the theoretical
models for each λ. Eigenfunctions φ1, φ4, φ5 with λ = −0.8, 0.81, 0.9 capture the state dynamics, additional φ2, φ3 with
λ = −0.72, 0.73 capture the output dynamics and λ = 1 is due to the presence of the constant, unit-valued basis element
(Proposition 3).

Fig. 3. MEMS Actuator: Schematic of a spring mass damper
system as a MEMS actuator model. The displacement of the
movable plate is measured by a differential capacitor with a
fixed capacitanceC2 and variable capacitanceC1 by applying
an input voltage Vs and measuring the output voltage Vo.

the models indicating that the corresponding algorithms
nearly accurately solve their objective functions (which
minimize 1-step prediction error) similar to the case in
Example 2. The n-step predictions of the models in Fig.
6 show that the nonlinear state-space model outperform
both the OC-deepDMD models. But, here the direct OC-
deepDMD model performs marginally better than the
sequential OC-deepDMD model (opposite of Example
2). Hence, we infer that both OC-deepDMD algorithms
perform similarly.

To evaluate how well the models capture the underly-
ing dynamics, we construct phase portraits of the var-
ious models shown in Fig. 7. We do so by considering

Fig. 4. MEMS Actuator: Comparing the n-step predictions of
states (x1, x2) and outputs (y1) for the nonlinear state-space,
direct OC-deepDMD and sequential OC-deepDMD models.

initial conditions around the phase space of the limit cy-
cle and plotting the n-step predictions of the models for
each initial condition. We compare the phase portraits of
each model with that of the simulated system using the
r2 metric. We see that the nonlinear state-space model
captures a limit cycle but with an offset that results in
a poor r2 value. The OC-deepDMD models capture dis-
sipating dynamics rather than that of a limit cycle. We
speculate that the objective function is not sufficient to
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Fig. 5. Activator-Repressor clock: Schematic of the interac-
tion of enzymes A, B and C (fluorescent reporter- output):
(a) A activates A,B and C (b) B represses A and C.

Fig. 6. Activator-Repressor clock: n-step prediction compar-
isons of states (x1, x2) and outputs (y1) for the nonlinear
state-space and direct and sequential OC-deepDMD models.

capture the dynamics and extend the objective function
to minimize the error in multiple step predictions. To do
so, we incorporate the idea we implement in [104] to con-
struct observables on the time-delay embedded states
yielding the OC-KO

ψ(xknd+nd , · · · , xknd+1) = Kψ(xknd , · · · , xknd−nd+1)

yknd = Whψ(xknd , · · · , xknd−nd+1).
(31)

where k is the discrete time index and nd indicates the
number of time-delay embeddings. Since the two OC-
deepDMD algorithms perform similarly, we stick to just
using the direct OC-deepDMD algorithm to identify the
time-delay embedded OC-deepDMD models. The phase
portraits of the direct OC-deepDMD models as nd is
increased is given in the second row of Fig. 7. We see that
as nd increases, the phase portrait takes the structure of
an oscillator with nd = 6 being optimal.

We see from Table 1 that the n-step prediction accu-
racy increases for this model at the expense of the 1-step
and output predictions which reduce. This is because
the formulation (31) simultaneously minimizes multi-
ple step prediction errors [104] which may not always
yield optimal 1-step predictions. Hence, we see that OC-
deepDMD algorithm has limitations when it comes to

the case of oscillators and time-delay embedded OC-
deepDMD models can be used to overcome them.

7 Conclusion

In this work, we propose a novel method to fuse state
and output measurements of nonlinear systems using
Koopman operator representations that are augmented
with a linear output equation (called OC-KOs). Using
the concept of diffeomorphic conjugacy, we show that
the dynamics of the measured output variables span a
subspace of the OC-KO lifting functions and that the
OC-KOs integrate the dynamics of both states and out-
puts. We show a sufficient condition for the existence
of state-inclusive OC-KOs and propose two DMD algo-
rithms that incorporate the output constraints to iden-
tify them. We use numerical examples to show the per-
formance of these algorithms.

In future work, we will use this technique to extract
genotype-phenotype models of microbes by fusing their
various time-series datasets. The genotype-phenotype
models will enable us to control the persistence of these
microbes in new environments. We expect the OC-KO
based sensor fusion method to cater to a large range of
dynamical systems where fusion of nonlinear dynamics
of two measurement sets is desired for applications like
observability analysis, observer synthesis and state esti-
mation.
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Fig. 7. Activator-Repressor clock: The phase portraits of the theoretical, nonlinear state-space, direct OC-deepDMD and
sequential OC-deepDMD models is shown in the first row. The second row shows the phase portraits of the time-delay
embedded OC-deepDMD models with the delay parameter nd = 4, 5, 6 and 7. The phase portraits are constructed using the
same initial conditions highlighted by red dots and r2 is computed using the theoretical phase portrait as the reference.
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[66] Marko Budǐsić, Ryan Mohr, and Igor Mezić. Applied
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