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We study experimentally the isoviscous displacement flow of two immiscible Newtonian
fluids in an inclined pipe. The less dense displacing fluid is placed above the denser
displaced fluid in a density-stable configuration. The displacing and displaced solutions are
oil- and water-based, respectively. The former exhibits nonwetting behavior in the vicinity
of the pipe wall, whereas the latter is wetting. The pipe has a small diameter-to-length
ratio. The mixing and interpenetration of two fluids have been studied over a wide range of
controlling parameters, revealing remarkable results. Compared to the previously studied
miscible limit, we observe behavior at the interface between the two fluids where the
displaced fluid stays “pinned” to the lower wall of the pipe upon pumping the displacing
one. This phenomenon, which is observed over the full range of investigated flow rates, tilt
angles, and density contrasts, is associated with the wetting characteristic of the displacing
liquid and is also present when light and heavy viscosity mineral oils are used as the
displacing fluid. Ultrasonic Doppler velocimetry revealed a segmented velocity profile at
the interface of the immiscible fluids. Due to pinning, the efficiency of the removal of
displaced fluid in the immiscible limit can be lowered by 14% compared to the miscible
case due to the combined effects of the density-stable configuration and the immiscibility
of the flow. Within the family of immiscible fluids, the maximum efficiency is achieved
at close-to-vertical tilt angles, large density contrasts, and counterintuitively low imposed
flow rates, which is of great importance in industrial design.
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I. INTRODUCTION

Displacement flows, or removal of one fluid by another, are common in a wide range of
industries, including food processing [1], water treatment [2], and oil and gas [3]. The last has
significantly motivated the present study. During the cementing phase of a conventional oil and
gas well, a series of water-based fluids are often pumped into the wellbore, which can be at
diverse tilt angles from the vertical direction [3]. However, for deep water and unconventional shale
wells, high-performance oil-based fluids can instead be used in order to reduce drilling risks [4,5].
Existence of both water- and oil-based phases during removal or cleaning operations introduces
immiscibility effects, which in turn can significantly increase the complexity of the problem.

Previous studies have examined buoyancy-driven miscible flows experimentally [6] and theo-
retically [7] in a lock-exchange configuration (no imposed flow), focusing on the effects of pipe
inclination and density contrast. Miscible flows with nonzero imposed velocity have also been
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FIG. 1. Schematic view of the experimental setup used. Interface shape is illustrative only.

studied through experimental and theoretical approaches, revealing novel laminar and turbulent flow
regimes [8,9]. Different geometries have been employed in miscible studies, including capillary
tubes [10], pipes [11], and Hele-Shaw cells [12], revealing sinuous and finger instabilities due to
different viscosities of the displacing and displaced fluids. Both water-based [14] and oil-based
fluid pairs [13] have been studied under miscibility as well. Immiscible flows have not been studied
to as great an extent, contributing to the impetus for this work. Hasnain et al. [15] studied immiscible
displacement flows in a density-unstable configuration (heavy displacing light) over a range of pipe
inclination angles, density differences, and flow rates.

This study is a sequel to two major studies in the literature: Alba et al. [16] and Hasnain et al. [15].
The former considers a density-stable configuration for miscible fluids, whereas the latter explores
a density-unstable configuration in the immiscible limit. Alba et al. [16] found that after an initial
transient period, the interface between miscible fluids settled into a constant shape. The distance
between subsequent identical shapes, defined as the fully developed stretch length L̂, increased
in a more horizontal pipe and decreased with a larger density difference. Miscible fluids were
found to have a displacement efficiency of about 96%. Hasnain et al. [15] found that immiscible
fluids in a density-unstable configuration were characterized by instabilities due to surface tension
and shearing effects. Viscous, transition (partially viscous and partially dispersed), and dispersed
regimes were observed, in which the shape of the flow interface becomes progressively more
unstable, moving from slumped flow that preserved distinct regions of both fluids to droplet
formation, where both water-in-oil (w/o) and oil-in-water (o/w) dispersions were observed.

The significant contribution of our study is to combine density-stable and immiscible flow effects,
which has not been carried out before in the literature to the best of our knowledge. Our study
covers a wide range of flow rates and pipe inclination angles. We discuss the experimental setup
in the following section and then present the main features of immiscible density-stable flows,
characterized with relevant dimensionless parameters. We also present the effects of parameteric
variations on displacement efficiency, with a brief summary provided towards the end.

II. EXPERIMENTAL SETUP

A. Apparatus and measurement

Our experiments have been conducted in a 2-m-long acrylic pipe of inner diameter D̂ = 9.53 mm,
the same as the one used in our recent experimental study [15]; see Fig. 1 for a schematic
representation. Briefly, the pipe can be tilted to any angle β between vertical (β = 0◦) and horizontal
(β = 90◦) states. An initially closed, pneumatically actuated gate valve (operated at 103 kPa),
located 40 cm from the upper end of the setup, separates the pipe into two sections. Flow into
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TABLE I. Parameter range of our experimental study.

Parameter Name Range

V̂0 Mean imposed velocity 69–1054 (mm s−1)
μ̂ Viscosity 0.005, 0.018, 0.129 (Pa s)
σ̂ Surface tension 3.5, 10.1, 33.4 (mN m−1)
β Inclination angle 0, 15, 30, 45, 60, 75, 85 (deg)
θ Fluids contact angle 52, 56, 59 (deg)
At = (ρ̂L − ρ̂H )/(ρ̂L + ρ̂H ) Atwood number (measure of density −0.042, −0.075, −0.125

difference)
Re = V̂0D̂/ν̂ Reynolds number (Inertial to viscous 6–1992

stress)
Fr = V̂0/

√
AtĝD̂ Densimetric Froude number (inertial to 1–17

buoyant stress)
Ca = μ̂V̂0/σ̂ Capillary number (viscous to surface tension 0.10–1.51

stress)

the pipe is steady and gravity-driven, achieved by an elevated displacing fluid tank in the laboratory.
Experiments are conducted mainly in the laminar regime; see Table I for the full parameter range of
this study. Throughout this paper, dimensional parameters are denoted with a “hat” (ˆ) symbol and
dimensionless parameters without.

The density of the light fluid is denoted by ρ̂L and that of the heavy fluid by ρ̂H . The displaced
fluid in the experiments is water densified by calcium chloride (CaCl2) in the range of 0–290 g
liter−1, resulting in a density of ρ̂H ∈ [997, 1181] kg m−3. Black dye (ink) with a concentration
of 800 mg liter−1 is added to the displaced fluid in order to measure concentration via optical
absorption [17]. The low concentration of dye used does not change the fluid properties. The less
dense displacing fluid, on the other hand, is an oil, in most experiments, silicone oil of density
ρ̂L = 918 kg m−3 and viscosity μ̂L = 0.005 Pa s.

In this study, refractive indices were not matched between themselves and the material of the
tube. However, the refractive index of fluids used is close to that of acrylic, i.e., n ≈ 1.33, 1.40, and
1.49 for water, silicone oil, and acrylic, respectively, which further reduces light refraction errors. In
areas where the pipe refraction gave rise to known errors, as in the case of images generated using
ultrasonic Doppler velocimetry (UDV), the error is acknowledged and guides are provided, as in
Fig. 11 below. The use of a fish tank may reduce refraction errors associated with the curvature of
the pipe [18,19]. While it is possible that the reported profiles of interface and displaced residual
fluid layer slightly change via the use of a fish tank, recent benchmarking studies have shown that
refraction errors do not affect bulk behavior of the flow and most importantly the displacing front
velocity [15,20,21].

As our focus is on isoviscous experiments, a small amount of xanthan gum thickener (245 mg
liter−1 mixed for 20 min at 400 rpm using an IKA F2M03GLA mixer) is added to the saltwater solu-
tion to match the viscosity of silicone oil. Upon rheological characterization using a HR-3 Discovery
Hybrid Rheometer from TA Instruments, it was found that the shear-thinning effects associated with
xanthan gum for the concentration given and our range of shear rate ( ˆ̇γ ∈ [0, 100] s−1) are negligible
(μ̂H ≈ 0.004–0.006 Pa s). Accordingly, the viscosities of the light and heavy fluids are assumed to
be equal (μ̂H ≈ μ̂L ≈ μ̂).

To measure the axial velocity profile of the flow, an ultrasonic Doppler velocimeter (model
DOP400, Signal Processing SA) was mounted 950 mm downstream of the gate valve at an angle
of ≈75◦ from the pipe axis. The UDV probe measures the speed of a flow using the reflection of
sound waves from particles within the flow, and the chosen angle balances a good signal to noise
ratio with reflections from the pipe wall [22]. Polyamide seeding particles (PSPs) with a diameter
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of 50 μm were used as the fluid tracer, selected for their density, which is close to that of the fluids
(ρ̂psp = 1030 kg m−3) in order to keep them neutrally buoyant in the flow. A PSP concentration of
0.5 g liter−1 in both fluids ensured an acceptable UDV echo, and a 4-MHz transducer was used
to take the measurements. The surface tension between the fluids was measured with a Sigma
701 Force Tensiometer (Biolin Scientific Inc.). The device has been successfully calibrated against
air-water (σ̂ = 72.9 mN m−1) and air-silicone oil (σ̂ = 22.1 mN m−1) [15].

At the start of each experiment, the gate valve is opened, and the flow moves under the
influence of gravity towards the drain. The volumetric flow rate, Q̂ = πD̂2V̂0/4, is controlled by
the adjustment of a needle valve located before the drain and is measured using a beaker and a
stopwatch. This method, which is accurately calibrated in our test experiments, showed superiority
over rotameter and magnetic flow meter measurements due to existence of oil and water mixtures
with nonstandard viscosity (μ̂ �= 0.001 Pa s). Here V̂0 is the mean imposed velocity. The experiment
is captured using a high-speed black-and-white digital camera (Basler Ace acA2040-90um CMOS,
20482 pixels) with 4096 gray-scale levels that facilitate analysis of a wide range of concentrations.
The camera captures the entire 2-m length of the pipe within its field of view using a high-resolution
lens (16 mm F/1.8. C-mount) and records images at a rate of 12–71 Hz, as a function of the imposed
flow rate. A well-tested MATLAB image processing code is used to convert gray-scale images from
the camera into color pictures for presentation and analysis purposes [15,16].

B. Cleaning procedure using soap water

Prior to each experiment, the pipe is filled above the gate valve with the displacing fluid and
below the gate valve with the displaced fluid. During the experiment, the oil-based displacing fluid
fills the length of the pipe, flushing out the water-based displaced fluid. At the time of the next
experiment, a thin layer of oil can still remain in the bottom portion of the pipe below the gate valve,
which can introduce an error into our study. A meticulous cleaning procedure involving soap-water
is therefore employed to remove this unwanted layer of oil. This would ensure that the oil-based
solution does not contaminate the water introduced into the lower portion of the pipe for the next
experiment set. Liquid soap is added to water at a concentration of 1.9 g liter−1. This solution is
mixed (3 s at 5 rpm) and then pumped through the pipe for 3 s at high velocity. The pipe is allowed
to empty, and then the process is repeated, with soapy water pumped for 3 s once more. The pipe is
again drained, and subsequently water is pumped through the pipe at a high velocity for 10 s to flush
all the in situ fluids out. The authors recognize that the soap can possibly introduce small quantities
of residual surfactant molecules into the pipe. In order to minimize the effect of any such molecules
introduced into the pipe by the soap, the pipe is drained one last time, and water is pumped through
at high velocity once more for 10 s in order to ensure a clean, oil-free pipe. This cleaning procedure
is employed for each experiment (total of 120). Note that due to the special configuration of water
and oil-based fluids in pipe in the experimental study of Hasnain et al. [15], such a soap-water
cleaning procedure was not required.

C. Parameter range

An analysis of the flows in this study reveals several relevant dimensional and dimensionless
paramters. The pipe inclination angle, β, ranges from vertical (β = 0◦) to near-horizontal (β = 85◦).
Experiments are conducted in the δ � 1 range, where δ = D̂/L̂ represents the aspect ratio of the
pipe. The Atwood number, At = (ρ̂L − ρ̂H )/(ρ̂L + ρ̂H ), is a measure of density difference of the
light and heavy fluids. For this study, At < 0, as we focus on the density-stable configuration [16].
Due to the magnitude of At in our study, both Boussinesq and weakly non-Boussinesq effects may
be relevant [15]. The fourth parameter is the Reynolds number, defined as Re = V̂0D̂/v̂, where
v̂ incorporates the average density of the fluids [ρ̂ = (ρ̂L + ρ̂H )/2] and the viscosity μ̂ that is
common to both fluids. The densimetric Froude number, Fr = V̂0/

√
AtĝD̂, captures the relationship

between inertial and buoyancy forces, while the relevance of the capillary number, Ca = μ̂V̂0/σ̂ ,
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FIG. 2. (a) Immiscible density-stable, (b) immiscible density-unstable, and (c) miscible density-stable
displacements. The bottommost image in each panel is a color bar of concentration C, with 0 and 1
referring to the displaced and displacing fluids, respectively. For comparison, panels (a) and (c) are of similar
Reynolds number. (a) Snapshots of the displacement flow for β = 45◦, V̂0 = 456.9 mm s−1, ρ̂H = 1181 kg m−3,
and ρ̂L = 918 kg m−3, at times t̂ = [0.42, 0.84, 1.26,..., 2.94, 3.36] s (At = −0.125, Re = 914, Fr = 4.22,
Ca = 0.65, θ = 56◦). The field of view is 1732 × 9.53 mm2. (b) Snapshots of the displacement flow for
β = 60◦, V̂0 = 81.4 mm s−1, ρ̂H = 1181 kg m−3, and ρ̂L = 918 kg m−3, at times t̂=[0.41, 3.39, 6.38,..., 18.27,
21.25] s (At = 0.125, Re = 163, Fr = 0.75, Ca = 0.12, θ = 56◦). The field of view is 1950 × 9.53 mm2.
(Figure taken from Hasnain et al. [15].) (c) Snapshots of the displacement flow for β = 70◦, V̂0 = 20.9 mm
s−1, ρ̂H = 1007 kg m−3, and ρ̂L = 999 kg m−3, at times t̂ = [21.5, 24.75, 28.00,..., 34.50] s (At = −0.0035,
Re = 855.2, Fr = 0.82). The field of view is 430 × 19 mm2, taken 800 mm below the gate valve. (Figure taken
from Alba et al. [16].)

and fluids contact angle, θ , arises from the immiscibility considered in the flow [15]. The range of
these dimensionless parameters is shown in Table I. Both dimensional and dimensionless quantities
are provided in figure captions for convenience.

III. RESULTS

A. Flow characterization

First, we present the main features of immiscible density-stable displacement flows. Figure 2
shows a typical experiment in which silicone oil displaces densified CaCl2-water. After the gate
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FIG. 3. Spatiotemporal diagrams of cross-sectional averaged concentration field, C̄ŷ(x̂, t̂), obtained from
the same experiments as shown in Fig. 2. (a) Figure taken from Hasnain et al. [15]. (c) Figure taken from Alba
et al. [16],

valve (pictured in green), is opened, the light fluid rapidly progresses downstream. The interface
between the light and heavy fluids is smooth in the density-stable configuration, in contrast with
the density-unstable configuration shown in Fig. 2(b), taken from Hasnain et al. [15]. In their
computational study of miscible density-stable displacement flows in a plane channel, Etrati et al.
[23] found that instabilities can form in the residual layer of the displaced fluid over time. Such
instabilities may have been present in the current work but were not observed as a main feature of
the flow. The notable differences between the density-stable and density-unstable cases are kinks
and instabilities shown in Fig. 2(b). Through experimental and theoretical analyses, Hasnain et al.
[15] showed that at early times there exist strong hydrodynamic shear instabilities in the form
of Kelvin-Helmholtz mode, causing large amplitude waves. Such waves may coalesce and form
sharp kinks that can further be triggered via surface-tension-driven Rayleigh instabilities at later
times [Fig. 2(b)]. In Fig. 2(a) the light fluid in red leaves a barely visible layer of blue at the
bottom, progressing forward above a thin layer of heavy fluid. This feature is common to all our
density-stable experiments and is in contrast to the miscible density-stable case shown in Fig. 2(c)
(taken from Alba et al. [16]), where the light fluid mixes with the heavy fluid at the bottom of the
pipe instead of rising above it.

Figure 3 shows spatiotemporal diagrams of the cross-sectional-averaged concentration field,
C̄ŷ(x̂, t̂), for the same experiments as in Fig. 2. The boundary between the light and heavy fluids
in the immiscible density-stable case (current study) is clearly visible in Fig. 3(a). However, in the
immiscible density-unstable case [15], there are a variety of waves and mixing bands obvious in
Fig. 3(b) which correspond to hydrodynamic instabilities discussed in Fig. 2(b). The spatiotemporal
diagram of the miscible density-stable case [16], given in Fig. 3(c), remains largely similar to that
of immiscible case Fig. 3(a). However, as we will discuss throughout the rest of the paper, these
flows can be significantly different in nature from one another.

Due to evident similarities in their flow patterns, we now focus on a comparison between
immiscible and miscible density-stable flows. Figure 4(a) shows the experimental ĥ/D̂ profiles
at times t̂ = [1.68, 1.96, 2.24,..., 3.08, 3.36] s for an immiscible flow. We use ĥ to represent the
equivalent interface height; it is a function of downstream distance and time: ĥ(x̂, t̂). The normalized
equivalent interface height, ĥ/D̂, can be thought of as the shape of the interface between the heavy
and light fluids. Marked differences from the miscible case [see Fig. 4(b)] can be observed. First,
the top part of the flow section shows a sharper transition between the light and heavy fluid due
to the absence of mixing. Second, it can be seen that the immiscible interface exhibits pinning
behavior near the bottom of the pipe, where successive profiles extend farther and farther out from
the same point close to the initial release, i.e., gate valve with x̂ ≈ 0 mm. This is in contrast to the
miscible case, where a profile looks almost identical to the previous and is simply shifted slightly
downstream. The distance between subsequent profiles is referred to as the stretch length in the
miscible case [16], but this parameter becomes ill-defined with immiscible fluids due to the pinning
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FIG. 4. (a) Experimental profiles of normalized ĥ(x̂, t̂), at times t̂ = [1.68, 1.96, 2.24,..., 3.08, 3.36] s
and streamwise location, x̂, for immiscible density-stable fluids, measured from the gate valve for the same
experiment as shown in Fig. 2(a), where β = 45◦ and V̂0 = 456.9 mm s−1. (b) Experimental profiles of
normalized ĥ(x̂, t̂) at times t̂ = [68, 74.5,..., 126.5, 133] s and streamwise location, x̂, for miscible density-stable
fluids (taken from Alba et al. [16]). (c) Normalized ĥ(x̂, t̂)/D̂ profiles for the same experiment as Fig.
4(a) plotted against (x̂ − V̂0t̂ )/t̂ . (Inset) ĥ(x̂, t̂)/D̂ plotted against (x̂ − V̂0t̂ ). (d) Collapse of the normalized
ĥ(x̂, t̂)/D̂ profiles with (x̂ − V̂0t̂ )/t̂ (taken from Alba et al. [16]). (Inset) ĥ(x̂, t̂)/D̂ plotted against (x̂ − V̂0t̂ )
(e) Schematic representation of pinning and nonpinning behavior in miscible and immiscible density-stable
flows, respectively. (f) Experimental evolution of the displacing front velocity value V̂f with time for the same
density-stable experiment as in Fig. 4(a).
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effect. For a steady-state flow, these profiles converge when plotted against (x̂ − V̂0t̂ )/t̂ , as shown in
Fig. 4(c) [24]. This similarity parameter represents placing the coordinate system at a point moving
with speed V̂0. It also collapses all the profiles at various times, allowing for the comparison of
experiments with different characteristics (e.g., density difference, At, angle, β, or velocity, V̂0)
that fundamentally affect the instance it takes for each experiment to complete, i.e., front reaching
the end of the pipe. This is particularly useful when we want to compare displacement efficiency
for various cases. In the next section we will also compare against the choice of x̂ − V̂0t̂ scaling
parameter. Fig. 4(d) shows the experimental ĥ/D̂ profiles for a miscible flow at times t̂ = [68,
74.5,..., 126.5, 133] s, with the collapse of these curves against (x̂ − V̂0t̂ )/t̂ pictured in the inset.
Notably, the interface shape and the distance between successive interfaces remain constant for the
miscible case. This suggests that after an initial transitory phase, the leading and trailing fronts,
the points farthest forward and farthest back in the interface, respectively, propagate forward at the
same speed [16]. Note that the reason the profile limits do not exactly correspond to 0 and/or 1 in
Fig. 4(b) is due to a measurement issue and not because of a residual film. In fact, this issue has
been repeatedly reported and discussed in the literature [15,16,18,20]. Such measurement noise is
due to the pipe wall and persists regardless of the use of a fish tank.

The pinning behavior indicates first that for immiscible fluids, the interface shape is continually
stretching over time into a more elongated curve. It also indicates that there is a thin layer of heavy
fluid remaining at the bottom of the pipe where the light fluid does not make contact with the base.
In Fig. 4(a) it can be seen that two immiscible effects are in competition. First, the bulk influx
of oil increasingly displaces the heavy fluid over time, causing the thin layer of heavy fluid to be
reduced in height close to the gate area. Simultaneously, at the advancing front of the flow, the
bottom edge of the interface is being increasingly sheared by the heavy fluid, causing the thin layer
of heavy fluid to increase in height farther away from the gate area. This pinning behavior represents
a significant departure from miscible density-stable flows, and is mainly considered to be due to the
wetting and nonwetting nature of the fluids. In our current study, the heavy fluid is water densified
with calcium chloride. The saltwater solution’s greater ability to maintain contact with the surface
of the pipe compared to the silicone oil results in a drag force on the oil that pins the interface to
the gate region. In the miscible case, both fluids are equally wetting, allowing for the front to move
smoothly along the bottom of the pipe after reaching a steady state. Note that in our experiments, we
have found that the pinning effect does not strongly depend on the soap-cleaning procedure and/or
surface tension value (see Fig. 10 below).

Fig. 4(e) shows a schematic representation of immiscible and miscible density-stable flows. The
top inset shows that there is a thin layer of water at the bottom of the pipe in the immiscible case.
The height of the thin layer is exaggerated for schematic purposes. The bottom inset for miscible
flows illustrates the absence of pinning behavior, as the leading and trailing fronts are equally
wetting. Fig. 4(f) shows a plot of V̂f versus time, where V̂f is the speed of the frontal region of
displacement. From this chart, it can be seen that V̂f reaches a steady-state value of 485 mm s−1

in the last half of the experiment. V̂f is calculated in the same manner as the immiscible study by
Hasnain et al. [15]: developed velocity values are compared in a large-scale perspective. The mean
and standard deviation over the steady-state portion are taken to the be the average value and error
in V̂f , respectively, and is what will be reported throughout the remainder of the paper. As discussed
in Taghavi et al. [9], the efficiency of a displacement process (effectiveness in removing displaced
fluid), ε, can be obtained from imposed and frontal velocities as ε = V̂0/V̂f .

B. Effect of experiment variables on displacement efficiency

We now explore the effect of our experiment variables on ĥ/D̂ profiles of the flow. The curvature
of the averaged ĥ/D̂ profiles gives an indication of the height of the thin layer of water beneath the
advancing front of oil, as demonstrated in Fig. 5(a). The profile in this figure has a vertical straight-
line interface that does not have much water beneath the oil, while Fig. 5(c) shows a more curved
interface that has a greater height of water beneath the oil. This height is correlated to displacement
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FIG. 5. Experimental profiles of ĥ(x̂, t̂)/D̂ for varying values of β with ρ̂H = 998 kg m−3 and ρ̂L =
918 kg m−3 (At = −0.042). (a) V̂0 ≈ 94 mm s−1 (Re ≈ 172). (b) V̂0 ≈ 459 mm s−1 (Re ≈ 838). (c) V̂0 ≈
909 mm s−1 (Re ≈ 1659). (Inset, left) ĥ(x̂, t̂)/D̂ plotted against similarity parameter (x̂ − V̂0t̂). (Inset, right)
Snapshots of the corresponding displacement flows.

efficiency, or the degree to which the displacing fluid evacuates the displaced fluid, because a larger
height of water beneath the advancing displacing fluid means that less of the displaced fluid has
been evacuated. As an inset to the figure, the ĥ/D̂ profile is also plotted against similarity parameter
x̂ − V̂0t̂ ; this parameter does not use a scaling by time, and it is noted that flow features are strongly
preserved in that presentation of the data as well. While x̂ − V̂0t̂ requires the selection of different
times (eg t̂1 and t̂2), at which two experiments reach the same x̂ value, a more direct comparison
(regardless of the instance in time) is possible with (x̂ − V̂0t̂ )/t̂ .

Figure 5 plots averaged ĥ/D̂ for varying values of β. In Fig. 5(a), experiments with low imposed
velocities (Re < 600) are plotted. The resulting profiles are almost identical, indicating that at low
Reynolds numbers, pipe inclination barely alters the flow. In other words, the efficiency of the
displacement, which is related to the shape of the interface, remains the same with angle, β, at low
imposed velocities. In Fig. 5(b) experiments with median imposed velocities (600 < Re < 1500)
are shown. In this region, a higher value of β results in a profile with more displaced fluid beneath
the front. This indicates that at low β for this range of imposed velocities, a higher displacement
efficiency is achieved. This variation in interface shape due to the pipe inclination can be understood
by considering a sealed column of two fluids with different densities. The horizontal line that marks
where the less dense fluid settles above the more dense fluid elongates when the column is horizontal
compared to when it is vertical. Similarly, the interface between the light and heavy fluids in this
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FIG. 6. Snapshots of change in isoviscous displacement flow with β for immiscible fluids in a density-
stable configuration, obtained for V̂0 ≈ 475.8 mm s−1, ρ̂H = 998 kg m−3, and ρ̂L = 918 kg m−3, at time t̂ ≈
2.5 s. (At = −0.042, Re ≈ 868, Fr ≈ 7.61, Ca ≈ 0.68, θ = 56◦) The field of view is 1659 × 9.53 mm2. The
color bar at the top left of the figure shows the corresponding concentration value, C, with 0 referring to the
pure displaced fluid and 1 to the pure displacing fluid.

study is longer (covers a greater length of the pipe in the direction of the flow) at lower pipe tilt
angles. Figure 5(c) shows that at the opposite extreme of Fig. 5(a), i.e., high imposed velocities
(Re > 1500), a similar limit to the effect of β is reached. In this region, a change in inclination of
the pipe also has little observable effect on the profile of the advancing front, although the curvature
of the profile in this region is greatly increased compared to the curvature of the low Reynolds
regime. This greatly increased curvature is thought to represent a limit of the flow after which the
frontmost sections of the intruding oil begin to form a ridge feature which is described in further
detail in Sec. III C.

Snapshots of the flow at a full range of pipe inclinations are shown in Fig. 6. It can be seen that
in this regime of median Reynolds number, at lower pipe inclinations there is more displaced fluid
pinned beneath the elongated advancing front, resulting in a lower displacement efficiency. This
pattern is consistent across changes in density difference in our experimental range.

The effects of density variations on the shape of the interface between the two fluids is presented
in Fig. 7(a) through changing Atwood number, At. Variations of the flow profile with At are similar
to variations of the profile with the tilt angle β, in which a low Reynolds number (Re < 600)
results in flow profiles that are flat and indistinguishable based on Atwood number [see Fig. 5(a)].
Results are not shown here for brevity. We have further confirmed that, at high Reynolds numbers
as well, differences in Atwood number do not cause marked changes in flow profiles, although the
profile once again adopts a more curved shape at Reynolds number greater than 1500 (results not
shown). However, in the median Reynolds regime (600 < Re < 1500), the effect of the Atwood
number becomes clearer. Representative experiments in this regime are presented in Fig. 7(a), with
corresponding snapshots provided in the inset. For similar imposed velocity (V̂0 ≈ 450.7 mm s−1)
and the same pipe inclination β = 60◦, an increase in the density difference reduces the displaced
fluid thickness beneath the advancing front, causing the interface to be flatter compared to a lower
density difference. This behavior, which is in line with the findings of Alba et al. [16] for the
miscible case, is due to the fact that there is a larger segregative force at the interface between the
two fluids at higher |At|. As a result, in the median range of Reynolds number (600 < Re < 1500),
the interface elongation is reduced (higher displacement efficiency) as |At| is increased.

Variations of the flow profile with the imposed velocity, V̂0, are shown in Fig. 7(b). Among other
controlling parameters, the imposed velocity was found to have the most prominent effect on the
flow profile, causing variations from a flat interface shape at low V̂0 to a fully elongated front at high
V̂0 consistently across all At and β values. These profiles had correspondingly lower and higher
levels of heavy fluid beneath the front. Alba et al. [16] found that in a density-stable displacement
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FIG. 7. Experimental profiles of ĥ(x̂, t̂)/D̂, for varying values of (a) At and (b) V̂0 for β = 60◦. Arrows
indicate direction of increasing |At| and V̂0, respectively. (a) Similar V̂0 (V̂0 ≈ 450.7 mm s−1) and different
At < 0 (Re ≈ 859, Fr = [7.79, 3.86], Ca ≈ 0.64, θ = 56◦). (b) At = −0.125 with different V̂0 = [90.4, 417.6,
862.4] mm s−1(Re = [181, 835, 1724], Fr = [0.84, 7.79, 7.97], Ca = [0.13, 0.69, 1.23], θ = 56◦). (Inset, left)
ĥ(x̂, t̂)/D̂ plotted against similarity parameter (x̂ − V̂0t̂). (Inset, right) Snapshots of the corresponding displace-
ment flows.

configuration, the interface stretching is controlled by the ratio of axial buoyancy forces to viscous
stress, χ :

χ = 2Re cos β

Fr2 = 2Atĝcos βD̂2

ν̂V̂0
(1)

As the imposed flow velocity, V̂0, is increased, |χ | is reduced, allowing the interface to spread more
[Fig. 7(b)]. This finding can be of great importance in designing pipe displacement and cleaning
processes, as low imposed velocities counterintuitively can result in a higher removal efficiency!

Figure 8 summarizes the effects of experiment variables on V̂f , the velocity of the displacing
fluid front [15], over the full range of experiments. The dashed line is the linear fit V̂f = 1.22V̂0.

FIG. 8. Front velocity values, V̂f , plotted against the imposed flow velocity, V̂0, for the full range of
experiments (At = [−0.042 ( ), −0.075 ( ),−0.125 (�)], θ = [52, 56, 59]◦). The dashed line is the linear
fit V̂f = 1.22V̂0. The solid line represents the ideal displacement case with V̂f = V̂0.
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The displacement efficiency for these experiments is found to be 1/1.22 ≈ 82%. This is a reduction
of 14% from the miscible case, in which the displacement efficiency was found to be ≈ 96% [16].
The lower values for immiscible experiments are likely due to the thin layer of displaced fluid
that remains beneath the advancing front. Compared to the miscible case, the immiscible scenario
demonstrates increased resistance to the forward motion of the incoming fluid, as the light oil is
nonwetting while the heavy saltwater solution is wetting at the wall. At the contact point on the
wall, the conflict due to wetting properties represents a region of friction and reduced flow speed
relative to the incoming flow of oil. Accordingly, the flow pattern shows, most evidently at higher
velocities, a faster-moving finger of oil advancing over a thin layer of slower-moving water (as
opposed to a less-curved interface of oil-water progressing down the pipe with both fluids moving
at a similar speed). The resulting flow pattern is less effective at evacuating the saltwater solution,
leading to the loss in efficiency compared to the miscible case.

It should also be noted that for low imposed velocities V̂0 < 300 mm s−1 (Re < 600), the linear fit
is V̂f = 1.16V̂0, which is closer to the ideal V̂f = V̂0 than the global fit, representing a displacement
efficiency of 1/1.16 ≈ 86%, or a 4% improvement over the combined set. As can be seen in Fig. 8,
deviations of the ratio V̂f /V̂0 from the best fit line tend to grow larger as the mean imposed velocity
V̂0 increases. This suggests that at larger Re, it is possible that due to these experimental fluctuations
in the ratio V̂f /V̂0, a different value (slightly larger or less than 1.22) might be observed.

There exist a few theoretical works in the literature predicting the displacing front velocity,
Vf = V̂f /V̂0 [9,25,26]. These papers mainly focus on density-unstable displacement flows at nearly
horizontal configurations, assuming miscible fluids. Taghavi et al. [9] further discuss density-stable
channel flows which represent the case of our paper more accurately (light displacing heavy). The
values of the displacement front velocity, Vf , for the isoviscous case is given in the range 1.1–1.3
for χ = 2Re cos β/Fr2 up to 10 (comparable to our experiments). The experiments carried out at
nearly horizontal angle in our case correspond to β = 75◦ and 85◦. We estimated the front velocity
for these experiments and found out that Vf ≈ 1.19, which is close to the values reported by Taghavi
et al. [9]. The slight difference can be due to the immiscible effects as well as plane-channel versus
pipe geometries adopted in the two studies.

C. Special features

During this study, the typical shape of the flow was that of an otherwise regular curve. However,
typically at lower pipe inclinations and Re > 600, the shape of the advancing front formed an
extended ridge shape. Figure 9(a) shows the development of such a ridge feature, while Fig. 9(b)
plots the occurrence of the ridge’s presence against dimensionless parameters. The dashed line in
Fig. 9(b) plots the experimental fit:

Re cos β

Fr
= 0.15Re − 67. (2)

This line splits the plane into regions without and with the ridge feature as well as regions with
higher and lower displacement efficiencies (above and below the line, respectively). Displacement
efficiency is defined as the volume of displaced fluid cleaned from the pipe after pumping
the displacing liquid [9]. It can be calculated by taking the inverse of Vf , which is itself the
mean imposed velocity V̂0 normalized by the parameter V̂f , i.e., Vf = V̂f /V̂0. When displacement
efficiency ε is plotted against the dimensionless parameters above, ε varies most strongly with
Re, decreasing as Re increases. Further, in the Re versus Re cos β/Fr plane, it is verified that the
presence of the ridge feature often coincides with lower values of displacement efficiency (result not
presented for brevity). This might be because, as can be seen in the last snapshot shown in Fig. 9(a),
the longer the ridge extends, the more heavy fluid is held underneath the advancing front. Further,
in a ridge formation the oil becomes more likely to break down into individual droplets that can
separate from the main flow and cause a reduction in the displacing power of the bulk fluid.
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FIG. 9. (a) Experimental snapshots for β = 60◦, V̂0 = 893 mm s−1, ρ̂H = 998 kg m−3, and ρ̂L =
918 kg m−3 at times t̂ = [0.18, 0.36, 0.55, . . . , 1.09] s (At = −0.042, Re = 1629, Fr = 14.29, Ca = 1.28,
θ = 56◦), with a field of view of 1736 × 9.53 mm2. The bottommost image is a color bar of concentration
C, with 0 and 1 referring to the displaced and displacing fluids respectively. (b) Full range of experiments
(At = [−0.042, −0.125], θ = 56◦), with the presence of a ridged feature marked with (�) and the absence of
a ridged feature marked with (•). The dashed line marks Re cos β/Fr = 0.15Re − 67, experimentally shown
to divide between the presence and absence of a ridge feature.

D. Other water-oil solutions

The flow patterns described so far were observed for experiments with silicone oil as the
displacing fluid. In order to evaluate the consistency of the reported experimental results when
different viscosity values are employed, tests were also performed with other couples of immiscible
fluids, using light viscosity (ρ̂ = 853 kg m−3, μ̂ = 0.018 Pa s, σ̂ = 10.1 mN m−1) and heavy
viscosity mineral oils (ρ̂ = 864 kg m−3, μ̂ = 0.129 Pa s, σ̂ = 33.4 mN m−1) as the less dense
displacing fluid. An additional 18 experiments were run to cover a broad range of inclination angle,
β, and mean imposed velocity, V̂0, at density difference At = −0.125. The displaced saltwater
solution was viscosified with xanthan gum in order to achieve an isoviscous experiment for silicone
oil as well as light and heavy viscosity mineral oil (245, 450, 1170 mg liter−1, respectively). Some
viscosity differences did exist in the heavy mineral case. (μ̂H = 0.045 Pa s, μ̂L = 0.129 Pa s) The
shear-thinning effects of xanthan gum are not significant in this range [15].

The results, presented in Fig. 10, show that in other oil-water flows, the same profile lengthening
of the fluid interface occurs with the increase of inclination angle β. Pinning of the flow profile was
also confirmed by the ĥ/D̂ profiles of every oil-water solution tested (results not shown), with lower
imposed velocities showing a more flat interface while higher V̂0 had more fluid held underneath the
advancing front. It can further be observed in Fig. 10(a) that the front of the silicone oil interface
protrudes further into the displacing fluid compared to the front of the light mineral oil [Fig. 10(b)],
which is itself further than the front of the heavy mineral oil interface [Fig. 10(c)]. This is thought
to be due to differences in surface tension σ̂ . As the surface tension decreases, the intruding oil is
required to overcome less resistance in order to penetrate further into the fluid, and therefore silicone
oil, the fluid with lowest surface tension, presents the most elongated shape of the three studied oils.

The best fit line for light mineral oil was V̂f = 1.28V̂0 compared to heavy mineral oil at V̂f =
1.41V̂0 and silicone oil V̂f = 1.22V̂0. Within each fluid pair tested, higher displacement efficiencies
correspond with lower Re. Across the fluid pairs, the results suggest that the role immiscibility plays
in the reduction of displacement efficiency is more pronounced with higher viscosity fluids.

E. UDV profile analysis

Ultrasonic Doppler velocimetry (UDV) provides insight into the internal dynamics of the flow
by giving a view of the velocity profile in the vertical diametral plane. In Fig. 11 the results are
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FIG. 10. Snapshots of change in isoviscous displacement flow with β for immiscible fluids in a density-
stable configuration, obtained for At = 0.125. (a) Silicone oil displacing saltwater with ρ̂H = 1181 kg m−3,
ρ̂L = 918 kg m−3, μ̂ = 0.005 Pa s, σ̂ = 3.5 mN m−1, and θ = 56◦ (Re ∈ [835, 914], Fr ∈ [3.86, 4.22], Ca ∈
[0.60, 0.65]). From left to right, V̂0 = 417, 457, 418 mm s−1 and t̂ = 1.3, 1.4, 1.4 s. (b) Light viscosity mineral
oil displacing saltwater with ρ̂H = 1097 kg m−3, ρ̂L = 853 kg m−3, μ̂ = 0.018 Pa s, σ̂ = 10.1 mN m−1, and
θ = 52◦ (Re ∈ [220, 258], Fr ∈ [3.94, 4.63], Ca ∈ [0.76, 0.89]). From left to right, V̂0 = 426, 487, 500 mm
s−1 and t̂ = 1.4, 1.2, 1.1 s. (c) Heavy viscosity mineral oil displacing saltwater with ρ̂H = 1110 kg m−3,
ρ̂L = 864 kg m−3, μ̂ = 0.129 Pa s, σ̂ = 33.4 mN m−1, and θ = 59◦ (Re ∈ [12, 18], Fr ∈ [1.51, 2.30], Ca ∈
[0.63, 0.96]). From left to right, V̂0 = 249, 247, 162 mm s−1 and t̂ = 1.1, 1.6, 1.7 s. The field of view is
1903 × 9.53 mm2.

presented for a median Reynolds experiment (Re = 853). Due to refraction errors, velocities at the
far end of the pipe are difficult to measure, as reported in Alba et al. [18] and Hasnain et al. [15].
Guidelines are therefore provided to mark the shape of the flow. The probe captures profiles every
30 ms, and these profiles are averaged over ≈0.5 s, selected to achieve a balance of resolution fine
enough to capture the flow features while reducing the effects of instantaneous variations in velocity.

Figure 11(a) presents snapshots of the flow over ≈2 s as it approaches and leaves the probe
location, which is marked by the yellow line. The letters at the end of each snapshot correspond to
the subfigure that displays the UDV profile at the probe location for that snapshot. At the beginning
of the flow (t̂ = [1.4, 1.9] s), only the heavy fluid is captured within the view of the probe, and
the profile is shown to be fairly close to a rounded Poiseuille flow in Fig. 11(c). The moment at
which the approaching oil front passes beneath the probe (t̂ ≈ 1.82 s) is presented in Fig. 11(d). The
flow is seen to be segmented into two distinct sections, with the top portion having a significantly
accelerated velocity compared to the lower portion, which corresponds to regions of light oil and
heavy saltwater, respectively. This emphasizes the fact that the light oil-based solution close to the
upper wall of the pipe is dragged by the heavy water-based solution close to the bottom part of the
pipe through interfacial viscous stress. The profile over the next 0.5 s (t̂ = [1.9, 2.4]) is presented
in Fig. 11(e). The lower portion of the heavy saltwater region is again seen to be moving slower
than the rest of the fluid, though to a lesser extent than before. Accordingly, the marked difference
between the two regions of higher and lower velocity has been reduced, as more incoming oil adds
momentum to the slower-moving lower portion. Figure 11(f) shows the profile averaged over the
next 0.5 s (t̂ = [2.4, 2.9]), during which the fluid interface leaves the probe area. The remaining
fluid is predominantly light oil, and the profile begins to approach a rounded Poiseuille profile once
more.

IV. SUMMARY

The displacement flow of two immiscible isoviscous Newtonian fluids in an inclined pipe has
been investigated experimentally in a density-stable configuration, where the nonwetting displacing
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FIG. 11. (a) Experimental snapshots for β = 75◦, V̂0 = 426 mm s−1, ρ̂H = 1181 kg m−3, and ρ̂L =
918 kg m−3 at different times t̂ = [1.4, 1.9, 2.4, 2.9] s (At = −0.125, Re = 853, Fr = 3.94, Ca = 0.61, θ =
56◦). The field of view is 1692 × 9.53 mm2. The bottommost image is a color bar of concentration C, with 0
and 1 referring to the displaced and displaced fluids, respectively. Each snapshot is assigned a letter B to E.
The representative UDV profiles to these flows are plotted in panels (b) to (e). (b) Velocity profile averaged
over t̂ = [1.4, 1.9] s, when only the displaced densified water flows under the UDV probe. (c) Velocity profile
at t̂ ≈ 1.82 s, the moment at which the front arrives at the probe. (d) Velocity profile averaged over t̂ = [1.9,
2.4] s, as the interface leaves the probe area. (e) Velocity profile averaged over t̂ = [2.4, 2.9] s, when displacing
oil has begun to dominate the flow profile. The dotted lines in panels (b) to (e) for ŷ � 1 are guides to the eye
correcting the UDV refraction errors close to the lower wall.
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fluid is less dense than the wetting displaced fluid. Our experiments have covered a broad range of
governing dimensionless parameters (Re, β, At). In contrast to the immiscible density-unstable case,
the flow pattern was smooth, without characteristic interfacial instabilities. Pinning characteristics
were observed in the immiscible density-stable flow and not the miscible density-stable flow. The
displacement efficiency, as quantified by the ratio V̂0/V̂f , was found to be greater at low Reynolds
and lower at high Reynolds numbers. This is a departure from the consistent linear fit described in
the miscible case. Overall, a displacement efficiency of ≈82% was found in immiscible density-
stable flows, a decrease of 14% from the ≈96% efficiency of the miscible case. This reduction of
displacement efficiency in the immiscible case is attributed to wetting and nonwetting properties
of the fluids. We highly anticipate the displacement efficiency to increase (even more so than the
miscible case) if a wetting fluid displaces a nonwetting one.

The flow was found to be governed largely by Reynolds number. However, within the median
Reynolds regime (500 < Re < 1500), increased pipe inclination and increased density difference
were found to increase the displacement efficiency. The effects observed in immiscible displacement
flows using silicone oil-water solutions were found to persist for other mineral oil-water mixtures
as well. Ultrasonic Doppler velocimetry was used to better understand the internal workings of
the flow, and a segmented velocity profile was observed at the location of the interface. A ridge
feature was observed in the flow and its presence was linked to a lower displacement efficiency.
Future experimental work on immiscible density-stable displacement flows will focus on examining
non-Newtonian shear-thinning and viscoplastic effects as well as wetting and nonwetting properties
in these flows.
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