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We study the buoyant displacement flow of two immiscible Newtonian fluids in an inclined duct
(two-dimensional channel) theoretically. The fluids may have different viscosities. The displacing
fluid is denser than the displaced one, i.e., a density-unstable configuration. For simplicity, the fluids
are assumed to behave as neutrally wetting in the vicinity of duct walls. The small diameter-to-length
ratio of the duct considered (δ � 1) has been used as the perturbation parameter in developing a
lubrication model (negligible inertia). Appropriate Navier-slip conditions have been applied at the
walls to overcome contact-line problem singularity. The lubrication model developed has then been
numerically solved using a robust total variation diminishing finite difference scheme. Completely
different flow patterns have been observed compared to the miscible limit. Fluids immiscibility is
found to cause a capillary ridge in the vicinity of the displacing front, which diminishes as the sur-
face tension is increased. For small values of surface tension parameter, the fluids immiscibility is
found to decelerate the advancement of interpenetrating heavy and light layers. More efficient dis-
placement (less fingering within the displacing layer) has been observed at small density differences
and when the displacing fluid is more viscous than the displaced one. The limit of zero imposed
velocity corresponding to the exchange flow has further been considered in the lubrication model.
An interesting jump in the interface height occurs close to the vicinity of the gate region due to the
immiscibility, which has been similarly reported in other recent computational works. Detailed math-
ematical notes on the similarity solution of the flow at long times are moreover provided. Investigating
the short-time dynamics of the flow reveals the dominance of diffusive surface tension effects over
buoyancy. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982896]

I. INTRODUCTION

Removal or displacement flow of one fluid by another
is widely observed in nature. These flows also have many
applications such as in the petroleum industry, coating and co-
extrusion, Gas Assisted Injection Molding (GAIM), biomed-
ical contexts (mucus, biofilms), cleaning of equipment, food
processing, and personal care.1–11 Much of the motivation for
the current study comes from common multi-fluid flow opera-
tions present in the construction and completion of oil and gas
wells, e.g., primary cementing, drilling, and hydraulic frac-
turing. Geothermal, CO2 sequestration and domestic water
distribution wells are cemented using the very same tech-
niques as in the oil and gas industry. Throughout the primary
cementing process, a series of fluids are pumped down the
casing, which can be tilted at any angle varying from hori-
zontal to vertical, to remove the drilling mud and/or other in
situ fluids.1 Operational failures can become highly expen-
sive and catastrophic as seen recently in the Gulf of Mexico.
For conventional resources, a Water-Based Mud (WBM) is
often used during drilling, which is miscible with cement
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slurry. For rapidly developing unconventional resources, the
use of a miscible WBM can nonetheless cause several prob-
lems associated with swelling shales and differential sticking.
These problems can be resolved by changing from a WBM
to an immiscible Oil-Based Mud (OBM) shown to improve
the cement bond and thus zonal isolation.12 While the dis-
placement flow of miscible fluids has been explored in depth
in the literature experimentally, computationally, and analyt-
ically by Refs. 13–28, our knowledge of immiscible fluids
mixing is very limited, due to the increased complexity aris-
ing from the presence of fluids interfacial tension as well
as their wetting/non-wetting characteristics when in contact
with a solid geometry. Currently there exist only a few exper-
imental29 and computational30,31 works on buoyant immis-
cible displacement flows demanding further research in this
area.

It has been observed that depending on the inclination
angles and other flow parameters, various viscous, transi-
tionary, and diffusive displacement flows may emerge charac-
terized by the degree of fluids interfacial instability.19 Viscous
flows are generally observed for close-to-horizontal inclina-
tion angles.23 As the duct is inclined toward vertical, the
interfacial instabilities grow causing transitionary and diffu-
sive flows. The fluid-fluid displacement in confined geometry
even in the viscous regime is indeed a complicated problem.
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Computational approaches to study such flows always have
limitations. On the other hand, thin-film lubrication-style mod-
els are proven to be amongst the most robust analyses present.
The evolution of these models in the literature for miscible
fluids has been such that first simple two-dimensional cases
are introduced,26 and then complex three-dimensional effects
of channels32,33 and pipes18,23 are considered. Despite the
geometrical difference, many underlying physics of compu-
tationally cheap two-dimensional problem is still similar to
that of a three-dimensional duct emphasizing the effective-
ness of the former. In line with the advancement of lubrication
style studies for a miscible case, we aim to introduce, for the
first time, an immiscible two-dimensional model paving the
way for more complex experimental and theoretical analyses
to come in the future.

The lubrication model is first derived in Section II. The
Total Variation Diminishing (TVD) finite difference scheme
used in numerically solving the derived model is explained
in Section III. In the presentation of our results in Sec-
tion IV, we will first discuss the case of displacement flows
and then consider exchange flows as a limiting case (zero
imposed flow). The paper closes with a brief summary in
Section V.

II. LUBRICATION MODEL DERIVATION

We aim to construct a lubrication model in a simplified
near-horizontal 2D channel geometry shown schematically in
Fig. 1. The heavy fluid with density ρ̂H and viscosity µ̂H dis-
places the light one with ρ̂L and µ̂L in a channel with thickness
D̂, inclined at an angle β measured from vertical. The mean
imposed velocity is V̂0. The lubrication model governing the
viscous displacement of two miscible generalized Newtonian
fluids has been developed in the work of Taghavi et al.26 It
is not difficult to show that for the immiscible flow shown in
Fig. 1, the governing streamwise and depthwise momentum
equations in the heavy layer reduce to

0 = −px +
1

1 − φ
χ + uyy, (1)

0 = −py −
1

1 − φ
, (2)

where χ = 2Re cos β/Fr2 is the driving buoyancy component
as a measure of the relative importance of the slope of the
channel to the slope of the interface, and φ= ρ̂L/ρ̂H . Here,

FIG. 1. Schematic of the immiscible displacement flow used in the lubrication
model analysis. Note that dimensional notations are used in the figure. The
interface shape is illustrative only.

Re = V̂0D̂/ν̂ is the Reynolds number, with ν̂ being the kine-
matic viscosity defined using the mean density ρ̂ = (ρ̂L

+ ρ̂H )/2 and the viscosity of the heavy fluid, µ̂H . More-

over, Fr = V̂0/

√
AtĝD̂ is the Froude number with At

= (ρ̂H − ρ̂L)/(ρ̂H + ρ̂L) and ĝ being the Atwood number and
gravitational acceleration, respectively. We have scaled the
streamwise and depthwise distances by D̂/δ and D̂, respec-
tively, where δ = D̂/L̂ is the channel aspect ratio industrially
taken to be very small (δ � 1).1 The pressure has been scaled
by µ̂H V̂0/δD̂. Similarly, for the light fluid layer we can have

0 = −px +
φ

1 − φ
χ + muyy, (3)

0 = −py −
φ

1 − φ
, (4)

where m = µ̂L/µ̂H is fluids viscosity ratio. Integrating (2)
within the heavy fluid layer (0 < y < h) gives

p = p0 (x, t) +
1

1 − φ
(χx − y) , 0 ≤ y ≤ h, (5)

where we have defined p0(x, t) as

p0 (x, t) = p (x, 0, t) −
χ

1 − φ
x. (6)

Integrating (4) in the depthwise direction gives the pressure
field within the light fluid layer as

p = p0 (x, t) +
1

1 − φ
(
χx − φy

)
− h + Whxx, h ≤ y ≤ 1,

(7)
where W = σ̂δ2/(ĝD̂2(ρ̂H − ρ̂L) sin β) is the Laplace number
with σ̂ being the interfacial tension between the two fluids.
Note that the last term in (7) is the jump in pressure due to the
capillary force. In order to capture surface tension effects we
have assumed W v O(1).

The pressure expressions (5) and (7) can now be used in
the streamwise momentum equations (1) and (3) to give

0 = −p0,x + uyy, 0 ≤ y ≤ h, (8)

0 = −p0,x + muyy − χ + hx −Whxxx, h ≤ y ≤ 1. (9)

Using the appropriate boundary and interfacial conditions,
Equations (8) and (9) can be integrated with respect to y to
give the streamwise velocity closures in each layer. In the case
of miscible fluids, the standard no-slip condition at the lower
(y = 0) and upper (y = 1) walls may be used as well as the
velocity and shear stress homogeneity conditions at the inter-
face (y = h) to solve for the velocity field.26 However, in the
case of immiscible fluids, one faces the well-known contact-
line problem due to the singularity of the stress at the walls.
Many authors have worked intensely for decades to address
this issue suggesting a wide range of remedies. The simplest
solution is to assume a narrow precursor film in the vicinity
of the wall, which works well for completely wetting fluids,
i.e., very small contact angles.34,35 Others have proposed mod-
els based on Navier-slip conditions.34,36–38 For simplicity and
assuming two neutrally wetting fluids, we apply Navier-slip
conditions at the lower and upper walls exactly as proposed
by34,36

u =
α

3h
uy at y = 0, (10)
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u =
αm

3 (h − 1)
uy at y = 1. (11)

Here, α is a small slip parameter chosen to be 0.001 in our
study. Note that h and h � 1 appear in the denominator of
(10) and (11), respectively, to ensure enhancement of the slip
velocity when approaching the walls (h→ 0 and 1). Spaid and
Homsy34 showed that in the context of contact line flows, there
is a negligible dependency of the results on the slip parameter
as long as α is chosen to be small. The homogeneity of the
velocity and stress at the interface requires

[u] = 0,
[
τxy

]
= 0 at y = h, (12)

where [] denotes the jump of the given quantity. Note that τxy

= uy, muy for the heavy and light fluids, respectively. The last
condition needed to solve systems (8) and (9) for the velocity
closures is the total flow constraint

1∫
0

udy = 1. (13)

The velocity in heavy and light layers can then be obtained as

u = p0,xy2/2 + c1y + c2, 0 ≤ y ≤ h, (14)

u = (p0,x + χ − hx + Whxxx)y2/(2m) + d1y + d2, h ≤ y ≤ 1,

(15)

where p0,x, c1, c2, d1, and d2 are coefficients given in Appendix
A. The lower layer flow rate flux function, q, can eventually
be calculated as

q =

h∫
0

udy, (16)

which is found to be in the form of

q = qA + (χ − hx + Whxxx) qB. (17)

Here, qA and qB, which are given in Appendix B as functions
of h, m, and α, represent the advective and buoyancy-driven
components of the flux function, q, respectively.26 In order to
gain a better understanding of the behavior of the flux function,
q, its variation as well as that of its derivative, qh (required
in Sections III and IV), is plotted versus h in Figs. 2(a) and
2(b), respectively, for various χ values. For simplicity, we have,
moreover, set hx = hxxx = 0, m = 1. It can be seen that q →
0, 1 as h → 0, 1. For low values of χ, the lower layer flow
rate, q, remains bounded between [0, 1] (Fig. 2(a)). However,
as χ is increased (enhanced counter-current) q may exceed
1 to conserve mass across the channel. The derivative of q,

i.e., qh shows a less monotonic dependency on h (Fig. 2(b)).
The variation of qh amplitude is enhanced with χ. The more
interesting observation is rather a sharp change of qh close to
the channel walls h = 0, 1. In all the cases shown, qh → 1.5
as h → 0, 1 as indicated in the inset of Fig. 2(b). This is
purely due to the implementation of the wall-slip conditions
(10) and (11) in our lubrication model to overcome contact line
singularity. Note that in the case of miscible fluids qh → 0 as
h→ 0, 1.26

Finally, the kinematic condition at the interface reads

ht + qx = 0. (18)
Note that in (18), the time is naturally scaled by D̂/(δV̂0).
Plugging the flux function (17) into (18) gives

ht + Fx (h) + Qx (h, hx) + Rx (h, hxxx) = 0, (19)

where

F (h) = qA + χqB, (20)

Q (h, hx) = −hxqB, (21)

R (h, hxxx) = WqBhxxx. (22)

III. NUMERICAL SCHEME

Equation (19) contains advection as well as second and
fourth order diffusion terms and should be treated with extreme
care from a numerical perspective. Our methodology to solve
(19) in space, x, and time, t, is based on a total variation
diminishing (TVD) finite difference scheme that combines the
robust explicit high-resolution scheme of Ref. 39 for the advec-
tion term with an explicit-implicit scheme similar to that of
Ref. 40 for diffusion terms. Note that one cannot practically
use a fully explicit scheme for the entire terms in (19) because
the required stable time step would then be on the order of
dt ∼ O(dx4) due to the presence of the fourth-order diffusion
term.41 Discretizing (19) using the finite difference method
gives

hn+1
j − hn

j

∆t
+

1
∆x

[
Fn

j+ 1
2
− Fn

j− 1
2

]
+

1
∆x

[
Qn+1

j+ 1
2
− Qn+1

j− 1
2

]

+
1
∆x

[
Rn+1

j+ 1
2
− Rn+1

j− 1
2

]
= 0. (23)

Note that the flux function, F, in (23) is treated explicitly in
time, whereas, Q and R terms are dealt with semi-implicitly to
ensure numerical stability as will be shown in the steps below.
The values of Fj±1/2 and Qj±1/2 are computed using the robust
(TVD) scheme of Ref. 39 as

FIG. 2. (a) The dependency of the flux
function, q, in (17) on the interface
height, h, for hx = hxxx = 0, m = 1, and
various values of χ. (b) qh versus h for
the same parameters as in (a). The inset
shows qh → 1.5 as h → 0. Similarly,
qh → 1.5 as h→ 1.



052102-4 A. Hasnain and K. Alba Phys. Fluids 29, 052102 (2017)

Fn
j± 1

2
=

1
2

{ [
F

(
hR,n

j± 1
2

)
+ F

(
hL,n

j± 1
2

)]
− an

j± 1
2

[
hR,n

j± 1
2

− hL,n
j± 1

2

]}
,

(24)
and

Qn+1
j+ 1

2
=

1
2


Q *

,
hn

j+1,
hn+1

j+1 − hn+1
j

∆x
+
-

+ Q *
,
hn

j ,
hn+1

j+1 − hn+1
j

∆x
+
-


,

(25)

Qn+1
j− 1

2
=

1
2


Q *

,
hn

j ,
hn+1

j − hn+1
j−1

∆x
+
-

+ Q *
,
hn

j−1,
hn+1

j − hn+1
j−1

∆x
+
-


.

(26)
Here,

hR,n
j+ 1

2

= hn
j+1 −

∆x
2

(
hn

x
)

j+1, hL,n
j+ 1

2

= hn
j +
∆x
2

(
hn

x
)

j,

hR,n
j− 1

2

= hn
j −
∆x
2

(
hn

x
)

j, hL,n
j− 1

2

= hn
j−1 +

∆x
2

(
hn

x
)

j−1, (27)

with (hn
x )k being a flux limiter chosen to be in the minmod class

of the following form:(
hn

x
)

k = minmod

(
hn

k − hn
k−1

∆x
,

hn
k+1 − hn

k

∆x

)
. (28)

Note that the function minmod is defined as

minmod (a, b) =
1
2

[
sgn (a) + sgn (b)

]
. min (|a| , |b|) . (29)

Also note that

an
j± 1

2
= max

*..
,

�����
∂F
∂h

�����hR,n

j± 1
2

,
�����
∂F
∂h

�����hL,n

j± 1
2

+//
-

(30)

gives the local propagation speed of the interfacial wave used to
estimate the stable time step, dt, given a Courant–Friedrichs–
Lewy (CFL) condition as

dt = CFL.dx/max (|a (t)|) . (31)

In our case, we have found that CFL ≈ 0.1 gives stable results.
Note that due to the nature of our numerical implementation,
the effect of χ (or β) on wave speed (30) is automatically taken
care of ensuring the stability of the code. In calculating the
Qn+1

j±1/2 terms in (25) and (26), only the derivative terms are
expressed implicitly. The fourth order diffusion term, R, in
(23) is calculated based on the scheme suggested by Ref. 41
as

Rn+1
j+ 1

2
= R *

,

hn
j+1 + hn

j

2
,

hn+1
j+2 − 3hn+1

j+1 + 3hn+1
j − hn+1

j−1

∆x3
+
-

, (32)

Rn+1
j− 1

2
= R *

,

hn
j + hn

j−1

2
,

hn+1
j+1 − 3hn+1

j + 3hn+1
j−1 − hn+1

j−2

∆x3
+
-

. (33)

Again, note that similar to Q terms, only the (third-order)
derivative terms in (32) and (33) are expressed implicitly.
Therefore, Equation (23) will still be linear for the unknowns
hn+1

j−2 , hn+1
j−1 , hn+1

j , hn+1
j+1 , and hn+1

j+2 . It is not difficult to show that
one will finally arrive at the following after using (24)–(26),
(32), and (33) in (23):

λ1hn+1
j−2 + λ2hn+1

j−1 + λ3hn+1
j + λ4hn+1

j+1 + λ5hn+1
j+2

= hn
j −
∆t
∆x

[
Fn

j+ 1
2
− Fn

j− 1
2

]
, (34)

which is a system of linear equations with λ1, λ2, . . . , λ5 being
coefficients of all evaluated at time n. Equation (34) can be
written in the matrix form as shown below given that all the
spatial points j are considered,

An~hn+1 = ~f n, (35)

where An is a pentadiagonal matrix of size N ×N (N being the
size of the spatial computational domain), and ~hn+1 and~f n are
vectors of size N. In order to efficiently solve Equation (35),
we have used a similar algorithm to that of Thomas which is
given in Ref. 42 used in tridiagonal systems based on Gaussian
elimination. The numerical examples shown in this paper are
attained using the computational resources in the Center for
Advanced Computing and Data Systems of the University of
Houston (Maxwell cluster). The run time on a single node on
such a cluster can take up to a few hours. All the test problems
given in Refs. 39 and 40 have been successfully recovered
using our numerical formulation.

IV. RESULTS
A. Displacement flow (V̂0 > 0)

Figure 3(a) shows the evolution of the interface height
with time assuming two iso-dense, (χ = 0) iso-viscous (m = 1)
fluids in the miscible limit (W = 0). The results are in complete
agreement with lubrication model results of Ref. 26. The fluids
are initially sharply separated at x = 0 over one dx length. As
can be seen from the figure, there is a shock-type profile formed
at the front over long times (hf ≈ 0.75). The speed of the front
is found to be Vf ≈ 1.125. Note that a no-slip condition (α = 0)
has been used in obtaining Fig. 3(a) since shear stress is not
singular in the case of miscible fluids.34 Figure 3(b) depicts the
snapshots of experiments carried out similar to our previous
work19 showing the displacement of water (ρ̂L = 998.8 kg/m3)
by a slightly heavier salt-water solution (ρ̂H = 1019.2 kg/m3)
in an inclined pipe (β = 70◦) with diameter D̂ = 9.53 mm.
Since the theoretical results shown in Fig. 3(a) correspond to
a 2D channel geometry, we are not after a one-to-one compar-
ison against the pipe experiments in Fig. 3(b). However, it can
be seen that the lubrication model has successfully captured
the global effects of the displacement flow in question. For
quantitative agreements of miscible lubrication-style models
and experiments; see Refs. 23 and 27.

1. Long-time behavior—Steady traveling wave solution

The interface profiles shown in Fig. 3(a) suggest a rather
self-similar pattern in the form of a steady traveling wave.
Taghavi et al.26 proved that steady traveling waves cannot exist
for the case of miscible fluids when using a frame moving with
the mean flow speed, i.e., η = x− t. However, they overlooked
the fact that the similarity parameter should also be divided
by time (η = (x − t)/t) as noted in the recent study of Zheng
et al.43 Using this similarity parameter and (17), Equation (18)
can be re-written as

ηhη −
[
q
(
h, χ − hη/t + Whηηη/t

3
)
− h

]
η
= 0. (36)

Seeking a steady solution at long times (t → ∞) results in

ηhη −
[
q (h, χ) − h

]
η = 0. (37)
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FIG. 3. (a) Evolution of the inter-
face height, h, with time, t =

[0, 1, 2, . . . , 10], in displacement flow
of two iso-dense, iso-viscous miscible
fluids (χ = 0, m = 1, W = 0). The results
are in complete agreement with Ref. 26.
(b) Sample snapshots of experiments
similar to Ref. 19 obtained for χ ≈ 84
(β = 70◦, Re = 703, Fr = 2.4) and m = 1
at times t̂ = [0, 1.72, 3.44, . . . , 13.75] s
in circular pipe geometry with diameter
9.53 mm. Length of the domain shown
is ≈2 m. The color bar shows the con-
centration field with 0 and 1 referring
to the displaced and displacing fluids,
respectively. (c) Collapse of the inter-
face height profiles using a similarity
parameter, η = (x − t)/t. The red line
shows the similarity solution obtained
from (41).

Alternatively, the following condition can be obtained as
follows:

η − qh(h, χ) + 1 = 0, (38)

which relates h to η and other parameters of the problem,
namely, m and α. For the case shown in Fig. 3 (χ = α = W = 0
and m = 1), Equation (38) is reduced to the following simple
relation:

η + 6h2 − 6h + 1 = 0, (39)

which clearly has an analytical expression for h (note that
η = −1 at h = 1). However, this solution does not satisfy the
total flow rate constraint (13) in the moving frame. Through a
novel approach, Zheng et al.43 showed that a compound wave
solution may instead be constructed containing a shock front,
hs, located at ηs > 0 and a stretching region behind (−1 < η
< ηS). The shock front location and height are determined
from the following condition:

ηs∫
−1

hdη = 0, (40)

as ηs = 1/8 and hs = 3/4, respectively, which is close to our
observation in Fig. 3(a). Therefore, the compound solution is
obtained as

h =



(
1 +

√
1 − 2(η + 1)/3

)
/2, −1 ≤ η ≤ 1/8

0, η > 1/8
(41)

The compound solution (41) as well as numerically computed
interface profiles at long time are shown in Fig. 3(c). Evidently,
there is a very close agreement found between the two showing
the effectiveness of the similarity solution approach.

Figure 4(a) shows the effect of an interfacial tension on the
interface profile evolution suggesting the formation of a cap-
illary ridge similar to Refs. 34 and 44 in the middle section
of the flow followed by a flat interface height (hf ≈ 0.8432,

Vf ≈ 1.106) which is found to grow in length over time. The
capillary ridge forming at long times is better depicted in the
close-up shown in Fig. 4(b). The immiscible results presented
here can potentially vary with the initial condition. However,
similar to the miscible limit, we have assumed that the fluids
are initially sharply separated at x = 0 over one dx length to
mimic a neutrally wetting configuration as closely as possi-
ble. The dependency of the results on the mesh size is also
provided. The results for two different mesh sizes are almost
indistinguishable. We have found that dx = 0.002 and CFL
= 0.1 give stable results. Unlike the miscible case, full features
of the flow may not be captured for dx ∼ O(10−2). In compari-
son with Fig. 3(a), it can be seen that the interfacial tension has
slowed down the leading displacement front through increas-
ing the shock height. Taghavi et al.26 found that the overall
efficiency of the displacement is proportional to ∼1/Vf , where
V f is the scaled speed of the displacing front. The closer the V f

is to 1, the more efficient the displacement would be. There-
fore, for the range given, the immiscibility has enhanced the
efficiency of the displacement. Also from Fig. 4, note a slight
slip-type effect in the trailing front close to the upper wall,
upstream of the capillary ridge region. The collapse of the inter-
face height profiles with the similarity variable η = (x− t)/t, in
the case of immiscible fluids, is investigated in Fig. 4(c). Akin
to the miscible case (Fig. 3(c)), the immiscible profiles suggest
convergence to a self-similar curve. However, it is not straight-
forward to obtain an analytical expression in this case as the
dynamics is governed by the differential equation (36). The
Whηηη/t3 term in this equation should be treated as O(1) when
taking the limit of t → ∞ because of the apparent influence of
interfacial tension on long-time interface height profiles (com-
pare Fig. 3(c) and Fig. 4(c)). Another difficulty in finding a
similarity solution for immiscible case is the addition of shock-
type conditions associated with slippage close to the upper
wall.
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FIG. 4. (a) Evolution of the inter-
face height, h, with time, t =

[0, 1, 2, . . . , 10], in the displacement
flow of two iso-dense, iso-viscous
immiscible fluids (χ = 0, m = 1, W =
0.01). (b) Interface height, h, at t = 10
obtained from part (a) for two different
mesh sizes. The inset depicts the close-
up of the displacement front revealing
the formation of the capillary ridge.
(c) Collapse of the interface height
profiles using the similarity parameter,
η = (x − t)/t. (d) Interface height with
z = x � V f t in the vicinity of the frontal
region obtained for the same simulation
using (44).

2. Frontal region

Having found hf and V f in Fig. 4, we may now shift to a
frame moving with speed V f , via defining z = x � V f t. Using
(17), the kinematic condition (18) can then be re-written as

ht +
[
qA + (χ − hz + Whzzz) qB − Vf h

]
z
= 0. (42)

Seeking a steady solution at long times (h = h(z) only) results
in [

qA + (χ − hz + Whzzz) qB − Vf h
]

z
= 0. (43)

Since q = 0 at h = 0, (43) implies that

qA + (χ − hz + Whzzz) qB − Vf h = 0, (44)

which is a boundary-value Ordinary Differential Equation
(ODE) numerically solvable for h ∈ [0, hf ] subject to the
following conditions:

h→ hf , hz → 0 as z → −∞, (45)

h→ 0 as z → 0. (46)

The numerical solution of (44) for parameters used in Fig. 4(a)
is given in Fig. 4(d). For the given front height and speed values
(hf = 0.8432 and V f = 1.106), we can interestingly observe
a stable solution which is identical to the frontal region in
Fig. 4(a). Such a stable solution cannot be recovered for hf

values other than 0.8432 (results not shown here for brevity).
Figure 5(a) compares the interface profiles at long time (t

= 10) for χ = 0, m = 1 and different values of the Laplace num-
ber. It can be seen that the interfacial tension acts to smoothen
out the frontal region of the flow causing a non-monotonic
effect on the speed of the front. In fact, it seems that the front
is slowed down at small values of W but interestingly is accel-
erated for higher W due to the profile smoothing effect; see
also the inset of Fig. 5(a) showing the disappearance of the
capillary ridge at higher W. The effect of χ on the displace-
ment flow of immiscible fluids is shown in Fig. 5(b). The figure

suggests that the frontal speed increases as the density differ-
ence between the fluids is increased. Note that the increase
in frontal speed is achieved through decreasing of the shock
height. The effect of a viscosity contrast in the immiscible
limit is shown in Fig. 5. It is evident that at lower m values
(less viscous displaced fluid), a more efficient displacement
has been resulted. We can also interestingly observe there is a
higher probability of the trailing front slippage for m < 1 in
the presence of an interfacial tension. This is due to the fact
that for such cases h → 1 close to the upper wall resulting in
an increase of the slip velocity; see condition (11). It is use-
ful at this stage to look into streamwise velocity profiles of
a typical simulation with viscosity ratio among fluids. Figure
5(d) shows computed velocity profiles using (14) and (15) at
different locations, x = 0, 2.6, 9.7, 11.6, 13.5, for m = 2 case
in Fig. 5(c). The profiles are calculated for interface heights,
h = 1, 0.98, 0.789, 0.02, 0, respectively. It is perceived that
there is slippage at the walls when h = 1 or 0; see conditions
(10) and (11). As soon as there is deviation from these interface
heights (e.g., h = 0.98 or 0.02), the wall slippage is reduced.
Since m = 2 corresponds to a less-viscous displacing fluid, we
note a larger gradient of velocity within this layer (h = 0.789
case in Fig. 5(d)) to ensure homogeneity of the shear stress
across the interface; see condition (12).

An important feature in designing the displacement flows
is whether there exists a back flow of the displaced fluid in
the upstream region of the gate valve (x = 0) or not. The back
flow should be particularly avoided in operations related to
the primary cementing of oil and gas wells.1 In the miscible
limit, the back flow is dictated by the critical parameter χc

≈ 69.94.18 When χ > χc there will always form a back flow.
Figure 6(a) shows that in the presence of (a fairly small) inter-
facial tension, the critical χc does seem to still be the defining
back flow criterion. As can be noted from the figure, the trailing
edge does travel upstream of the gate region (x < 0) for χ > χc.
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FIG. 5. Comparison of the interface
height, h, at t = 10 for (a) χ = 0, m = 1 at
different values of W, (b) W = 0.01, m = 1
at different values of χ, and (c) χ = 0,
W = 0.01 at different values of m. The
inset in part (a) shows the close-up of the
displacement front. (d) Velocity profile
plotted at locations x = 0, 2.6, 9.7, 11.6,
and 13.5 corresponding to different dot-
ted interface heights, h = 1, 0.98, 0.789,
0.02, and 0, for m = 2 case in part (c).

As the close-up in the figure suggests, the trailing front inter-
face height just before the back flow (χ < χc) is more than
that of the leading front. However, after the critical point is
passed, the trailing front height interestingly drops below the
leading front height. Upon progressively increasing the density
difference through χ parameter beyond the critical value, χc,
one expects the formation of a stronger back flow. Figure 6(b)
shows the long time interface height profiles for χ = 150 and
W = 0, 0.01. There is a noteworthy modification of the (leading
and trailing) frontal height and speed upon the formation of
two capillary ridges in the flow. In simple words, it seems as
though the surface tension (at least for small W ) is acting to
hold the flow together by hindering the counter-current of the
layers.

B. Exchange flow (V̂0 = 0)

The total flow rate constraint (13) implies a displacement
configuration where there exists a net flow from the displacing
side to the displaced one (V̂0 > 0). In the absence of a mean
flow (V̂0 = 0), one recovers an exchange flow, i.e., the flow
driven purely by buoyancy.25 The following total flow rate
constraint shall then be used instead:

1∫
0

udy = 0. (47)

The flux function, q, in the form of (17) can consequently be
calculated giving qA and qB. It is not difficult to show that in
the case of exchange flow, the advective flux, qA, is zero, while
the buoyancy-driven flux, qB, remains intact. In other words,

qA = 0, (48)

qB = qB. (49)

The kinematic condition (19) may be solved using the same
numerical scheme explained in Section III. Note that the flow
behavior in the model is still captured via the χ parameter
which is immaterial of V̂0. Therefore, V̂0 = 0 will not impose
any singularity in the exchange flow model.

Figures 7(a) and 7(b) show the interface height profiles,
h, for exchange flows at time t = 10 and different values
of W obtained for χ= 10 and 30, respectively. First thing to
notice upon comparison with displacement results (Fig. 4, for
instance) is that the flow in the case of exchange is symmetric
with respect to x, which is also reported in Refs. 14 and 30.

FIG. 6. (a) Change in the interface
height profile, h, for m = 1 and W = 0.01
at t = 10 in the vicinity of the critical
χc ≈ 69.94. (b) Interface height, h, plot-
ted at t = 10 for m = 1, χ = 150, and
W = 0,0.01. The inset shows the close-
up of the intermediate capillary ridge
region causing jump in the interface
height.
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FIG. 7. Change in the interface height
profile, h, of exchange flow for m = 1, t
= 10, and various values of W obtained
for (a) χ = 10 and (b) χ = 30. (c) Inter-
face height profile obtained for χ = 30,
W = 0.01, t = 10, and various values of
viscosity ratio, m, indicating a shift in
the location of the interface jump point.

Note the slower flow advancement for χ = 10 case (Fig. 7(a))
compared to χ = 30 (Fig. 7(b)). The driving buoyancy force
in the former is less than that of latter. The pattern observed in
Fig. 5(a) with W for the displacement flow case approximately
holds also in the exchange flow. It is observed that small values
of surface tension parameter yield to a capillary ridge decel-
erating the heavy and light layers compared to the miscible
case (W = 0). However, as W is increased, a smoothing effect
is observed. Interestingly, at a higher value of χ (Fig. 7) and
for rather small values of W, there is a jump observed in the
interface height close to the gate region (x = 0). The heavy
layer has a higher h value than the light one. Similar jumping
behavior has been observed in lattice Boltzmann simulations
of Refs. 30 and 31 for viscous flows carried in the 2D channel
geometry. The effect of a viscosity ratio between two fluids on
the interface height is investigated in Fig. 7(c). The spreading
of the interface appears to be maximal/minimal for low/high
values of m. This observation is in line with findings of Refs. 26
and 33 for miscible fluids. Similar jump-type behavior across
the interface to the iso-viscous case (Fig. 7(b)) is moreover
observed. However, there appears to be a shift in the location
of the jump point with m. This is possibly due to the fact that
in the presence of a viscosity ratio between the two fluids, the
flow becomes asymmetric, even for miscible case, on the right
and left hand sides. Surface tension will then act to intensify
such flow asymmetry resulting to a shift in the location of the
jump point.

1. Short-time behavior

The early stage of a displacement flow in a frame moving
with speed 1 is, in fact, similar to that of an exchange configu-
ration where gravitational spreading (proportional to the slope
of the interface) dominates the imposed flow.26 In this case,
a similarity parameter, ζ = x/

√
t, can capture the dynamics

of the flow over short time; see Refs. 26 and 33. Using this

similarity parameter and (17), (48), and (49), Equation (18)
can then be re-written as

1
2
ζhζ +

[
qBhζ

]
ζ
−
√

t
[
χqB

]
ζ −

1
t

[
WqBhζζζ

]
ζ
= 0. (50)

In the absence of an interfacial tension (W = 0) and considering
short times (t → 0), one would obtain the following equation
governing the interface height similarity solution:

1
2
ζhζ +

[
qBhζ

]
ζ
= 0. (51)

Based on the numerical solution shown, e.g., in Fig. 7(a) for
miscible fluids (W = 0), it can be seen that close to the walls
(h → 0, 1) the slope of h becomes singular, i.e., hζ → −∞;
see also Ref. 32. Therefore, it is more convenient to work with
ζ(h) instead of h(ζ). It is not difficult to re-write Equation (51)
as

ζhh −
1

qB

(
1
2
ζ(ζh)2 + qB,hζh

)
= 0. (52)

Equation (52) may be solved numerically subject to the bound-
ary conditions ζh(h= 0) = ζh(h= 1) = 0. However, it is more
convenient to solve (52) via a shooting method.26,32,43 For
the case of iso-viscous fluids, one would expect symmetry,
i.e., ζ(h = 0.5) = 0. Choosing an arbitrary slope value for
ζh(h = 0.5) one may solve (52) over, for example, h ∈ [0.5, 1]
until boundary condition ζh(h = 1) = 0 is satisfied. This solu-
tion, which is similar to that of Taghavi et al.,26 is plotted
in Fig. 8 showing an excellent agreement with the numerical
solution of the lubrication model Partial Differential Equation
(PDE) (18) at short time (t = 0.001).

In the case of immiscible fluids (W , 0), Equation
(50), however, suggests that the interfacial tension term,[
WqBhζζζ

]
ζ
, dominates other terms since 1/t → ∞ as t → 0.

The solution of this governing equation is in the following
form:

qBhζζζ = c, (53)
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FIG. 8. Short-time behavior of the interface height, h, plotted at t = 0.001
versus ζ = x/

√
t for m = 1, χ = 10, and W = 0 and 0.01. The solid red line

indicates asymptotic solution (52) for the miscible case (W = 0).

where c is a constant. Alternatively,

ζhhh − 3(ζh)−1(ζhh)2 +
c

qB
(ζh)4 = 0. (54)

Numerical solution of (54) via a shooting method is more
involved than (52) due to the additional boundary conditions
required. However, a short time solution of the full lubrica-
tion model PDE (18) in the presence of an interfacial tension
(W = 0.01) is added to Fig. 8 for comparison with the miscible
case. The spreading of the interface over a larger domain of ζ is
evident which is in line with the suggestion of asymptotic anal-
ysis (50). In other words, it may be concluded that the dynamics
of the interface at short times is dominated by the interfa-
cial tension as opposed to buoyancy. As time is increased, the
slope of the interface changes too altering the overall dynam-
ics of the flow. Upon comparing Figs. 7(a) and 8, it can be
observed that even though the interface height for the immis-
cible case is more diffuse at the beginning of the experiment,
over long times, the heavy and light fronts can spread further
in the miscible case.

V. CONCLUSIONS AND FUTURE WORKS

Displacement flow of two immiscible Newtonian fluids
in an inclined duct (two-dimensional channel) has been inves-
tigated theoretically via developing a lubrication model. The
displacing fluid is denser than the displaced fluid (i.e., unstable
density) both behaving as neutrally wetting in contact with the

solid boundary. In comparison with the miscible fluids limit
studied well in the literature, it is found that the fluids immisci-
bility causes a capillary ridge in the vicinity of the displacing
front, which diminishes as the surface tension is increased.
There is a novel slip-type behavior also present in the vicin-
ity of the top wall in the immiscible case. For small values
of the Laplace number (surface tension parameter), the fluids
immiscibility is found to decelerate the advancement of inter-
penetrating heavy and light layers. The frontal region of the
flow is calculated semi-analytically by switching to a moving
frame of reference showing agreement with numerical results.
The displacement front velocity is decreased (resulting to a
higher efficiency) when density difference is small and/or the
displacing fluid is more viscous. While a similarity solution
is easily attainable for the miscible case, the analysis for the
immiscible limit is more involved. The limit of zero imposed
velocity corresponding to the exchange flow has further been
investigated. Similar capillary-ridge patterns have been identi-
fied within the heavy and light fingers. In addition, there forms
an interesting jump in the interface close to the vicinity of the
gate valve region, which is also reported in recent lattice Boltz-
mann simulations of Ref. 30. Through an asymptotic analysis
approach, it is found that the dynamics of flow at early stages
of the release is dominated by diffusive interfacial tension
effects. A final note here is that the experimental investigation
of the neutrally wetting problem in hand is slightly challeng-
ing since various immiscible oil/water systems exhibit partial
non-wetting/wetting adjacent to the solid duct walls such as
the study of Ref. 29. However, if the inner region of the duct
is covered with appropriate coatings there can be a possibility
of obtaining neutrally wetting setting for both fluids present
comparing against the theoretical predictions of the developed
model.
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APPENDIX A: COEFFICIENTS IN VELOCITY EXPRESSIONS (14) AND (15)

p0,x = (−6αh4m2 − 3h6m + 6αh4m + 18αh3m2 + 3h6 + 21h5m + 4α2hm2 − 14αh3m

− 12αh2m2 − 15h5 − 45h4m − 4α2m2 + 6αh2m + 30h4 + 39h3m + 6αhm − 30h3 − 12h2m − 4αm

+ 15h2 − 3h)(χ − hx + Whxxx)/L + (36h3m2 − 36h3m − 36h2m2 − 12αm2 + 72h2m − 36hm)/L, (A1)

c1 = h(4αh4m2 + 3h6m − 4αh4m − 10αh3m2 − 3h6 − 15h5m + 12αh3m + 6αh2m2

+ 15h5 + 27h4m − 12αh2m − 30h4 − 21h3m + 4αhm + 30h3 + 6h2m − 15h2 + 3h)(χ − hx + Whxxx)/L

+ h(−18h3m2 + 18h3m + 18h2m2 + 12αm2 − 18h2m − 18hm + 18m)/L, (A2)
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c2 = αc1/(3h), (A3)

d1 = −h(−3h6m − 4αh4m + 3h6 + 3h5m + 4αh4 + 2αh3m − 3h5 − 4αh3

+ 6αh2m + 3h4 + 4α2m − 9h3 − 4αh + 6h2 + 4α)(χ − hx + Whxxx)/L

− h(18h3m − 18h3 − 18h2m − 12αm + 18h2 + 18h − 18)/L, (A4)

d2 = (1/6)(6αh6m2 + 8α2h4m2 − 6αh6m − 6αh5m2 − 18h7m − 8α2h4m − 8α2h3m2 − 18αh5m + 18h7

+ 27h6m + 12α2h3m + 24αh5 + 36αh4m − 27h6 − 9h5m − 42αh4 + 9h5 + 8α2hm + 18αh3 − 9h4

− 6αh2 + 9h3 + 6αh)(χ − hx + Whxxx)/L + (1/6)(−36αh3m2 + 36αh3m + 72αh2m2 + 108h4m + 24α2m2

− 72αh2m − 108h4 − 216h3m − 36αhm + 216h3 + 108h2m + 36αm − 108h2)/L. (A5)

Here,

L = −3h6m2 + 6h6m + 3h5m2 − 8αh3m2 − 3h6 − 18h5m + 8αh3m + 12αh2m2 + 15h5 + 30h4m

+ 4α2m2 − 12αh2m − 30h4 − 30h3m + 30h3 + 12h2m + 4αm − 15h2 + 3h. (A6)

APPENDIX B: FLUX FUNCTIONS qA AND qB IN (17)

qA = hm(−3h5m − 6αh3m + 3h5 + 3h4m + 6αh3 + 10αh2m + 3h4 + 4α2m − 6αh2 − 15h3 − 6αh + 9h2 + 6α)/

(−3h6m2 + 6h6m + 3h5m2 − 8αh3m2 − 3h6 − 18h5m + 8αh3m + 12αh2m2 + 15h5 + 30h4m + 4α2m2

− 12αh2m − 30h4 − 30h3m + 30h3 + 12h2m + 4αm − 15h2 + 3h), (B1)

qB =
h2(h − 1)2

3
(3αh3m2 + 3h5m + 4α2hm2 − 3h5 − 6h4m − 4α2hm − 3αh3 − 4αh2m + 9h4

+ 3h3m + 4α2m + 9αh2 + 4αhm − 9h3 − 9αh + 3h2 + 3α)/

(−3h6m2 + 6h6m + 3h5m2 − 8αh3m2 − 3h6 − 18h5m + 8αh3m + 12αh2m2 + 15h5 + 30h4m + 4α2m2

− 12αh2m − 30h4 − 30h3m + 30h3 + 12h2m + 4αm − 15h2 + 3h). (B2)

Setting α = 0 in the above, the flux expressions of Ref. 26 for
miscible fluids will be recovered as

qA =
3mh2(mh2 + (h + 3)(1 − h))

3[(1 − h)4 + 2mh(1 − h)(h2 − h + 2) + m2h4]
(B3)

and

qB =
h3(1 − h)3(mh + (1 − h))

3[(1 − h)4 + 2mh(1 − h)(h2 − h + 2) + m2h4)]
. (B4)
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